跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/25 02:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐健雄
研究生(外文):Chien-Hsiung Hsu
論文名稱:表面階層式抗反射層結構應用於量產型單晶矽太陽能電池
論文名稱(外文):Utilizing Surface Hierarchical Antireflection Structure on Industrial-scale Crystalline Si Solar Cells
指導教授:管傑雄管傑雄引用關係
口試委員:徐大正孫允武林瑞明
口試日期:2015-07-03
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:52
中文關鍵詞:量產型單晶矽太陽能電池階層式抗反射結構
外文關鍵詞:Industrial-scaleCrystalline Si Solar CellsHierarchical Antireflection Structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為解決能源危機,許多再生能源興起,如水力、風力、太陽能等,而太陽能電池相較於其他再生能源,擁有不受使用地點限制的優點。太陽能電池又細分成許多種類,如矽晶、三五族、染料敏化、CIGS等太陽能電池,其中矽晶太陽能電池是市場大宗,所以矽晶圓太陽能電池具有發電成本較低、技術成熟及良率較高的優勢,因此未來如何持續降低其發電成本乃是一重要課題。
本論文實驗主題為使用一種簡單且適用於量產型單晶矽太陽能電池製程方法,來製造表面階層式抗反射結構。故本論文提出以微米尺度金字塔紋理蝕刻中,再加入金屬輔助化學蝕刻方法,蝕刻出不同粒徑大小之奈米孔洞,組合成一奈米/微米尺度之階層式紋理結構,增加光吸收之有效路徑長度,使全頻譜反射率降低增加入射光利用。藉此探討於相同微米尺度金字塔紋理中,搭配不同粒徑大小之奈米孔洞的表面形貌對光波長400nm到1100nm頻段之反射率關係,與電流電壓特性曲線之關係。
其中奈米孔洞的製作,可分為兩部分,第一部分為利用電子槍蒸鍍系統,蒸鍍銀薄膜,再利用快速熱退火系統,形成兩步驟之金屬輔助化學蝕刻方法所需銀粒子,於微米尺度金字塔紋理中蝕刻粒徑較大之奈米孔洞。在此探討其大粒徑奈米孔洞與反射率之關係。
第二部分為利用硝酸銀/氫氟酸混合溶液之一步驟金屬輔助化學蝕刻方法,於微米尺度金字塔紋理中蝕刻粒徑較小之奈米孔洞,在此探討其小粒徑奈米孔洞與反射率之關係及電壓電流特性關係。
經由本實驗可發現使用低成本的金屬輔助蝕刻方法,製作表面階層抗反射結構,展現出相當優異的反射率表現,且能有效製作量產型太陽能電池。


In order to solve the energy crisis, many renewable energy resources rise, such as hydro, wind, solar cells. Among so many renewable energy , the best advantage of solar cell is not limited by place .Solar cells are divided into many types ,such as silicon ,III-V ,dye-sensitized ,CIGS solar cells, etc., Silicon base solar cells is the mainstream, so the silicon base solar cells with low cost , mature production technology and high yield , so how to reduce its costs continually is an important issue.
This thesis topic is using a simple and mass-produced way to etch hierarchical antireflection structure on industrial silicon based solar cells. However ,this thesis propose that using metal-assisted chemical etching to etch different size nanopores on micro-scale pyramid texture to form hierarchical antireflection structure. This structure enable incident light absorption effectively and low reflectance in 400 nm to 1000 nm.
So base on this concept ,we discuss the different nanopores size how to impact the reflectance in 400 nm to 1000 nm ,I-V property and its morphology.
The nanopores process can be divided into two parts .First, deposition Ag thin film with thickness 20 nm by E-gun evaporation system ,and then use rapid thermal annealing system to form the bigger Ag particle ,called two step metal-assisted chemical etching. We discuss the relationship between nanopores size and reflectance in this part.
Second, We use AgNO3 and HF ,called one step metal-assisted chemical etching, to etch the smaller nanopores on micro-scale pyramid texture. We discuss the relationship between nanopores size and reflectance, I-V property.
We use the low-cost metal-assisted etching process, making the surface hierarchical antireflective structure, showing very excellent reflectance performance, and can effectively make mass-produced solar cells.


目錄
口試委員審定書 I
銘謝 II
摘要 III
Abstract IV
目錄 VI
圖目錄 VIII
表目錄 X
第一章 簡介 1
1-1 研究動機 1
1-2 章節概要 3
1-3 文獻回顧 3
第二章 矽晶太陽能電池特性 5
2-1 工作原理 5
2-2 太陽能電池性能參數 6
2-3 電性量測 8
2-4 矽材料特性與吸收係數 9
2-5 光譜響應與量子效率 10
2-6光學損耗(Optical loss) 12
2-7 金屬輔助化學蝕刻 13
2-7-1 兩步驟金屬輔助化學蝕刻 14
2-7-2 一步驟金屬輔助化學蝕刻 15
第三章 表面階層式太陽能電池製程與量測系統 19
3-1表面階層式太陽能電池製程機台 19
3-1.1 POCl3爐管 19
3-1.2電漿增強化學氣相沉積 (Plasma-Enhanced Chemical Vapor Deposition,PECVD) 20
3-1.3網版印刷機 21
3-1.4燒結爐 22
3-1.4 電子槍金屬蒸鍍系統 22
3-1.6 快速熱退火系統 (Rapid Thermal Annealing,RTA) 23
3-2表面階層式太陽能電池製程參數與製程步驟 24
3-3 量測系統 27
3-3-1 掃描式電子顯微鏡(Scanning Electron Microscopy) 27
3-3-2 電壓電流量量測 29
3-3-3 UV Visible(Shimadzu Europe - UV-1650PC) 29
第四章 實驗數據與結果討論 30
4-1 金屬輔助化學蝕刻參數與表面形貌關係 30
4-1-1 兩步驟金屬輔助蝕刻 30
4-1-2 一步驟金屬輔助蝕刻 33
4-2 反射率比較 35
4-3 電流電壓特性比較 38
第五章 結論與未來展望 42
參考文獻 43
附錄 46





[1] 郭浩中,賴芳儀,郭守義,蔡閩安 “太陽能光電技術 Solar Photovoltaics
Technologies”,五南圖書股份有限公司
[2] Global Warming Art:Information for potential contributors
[3] http://web.it.nctu.edu.tw/~jtchen/research/c-research-opv.htm
[4] Seung-Yoon Lee, Hongsik Choi, Hongmei Li, Kwangsun Ji, Seunghoon Nam,Junghoon Choi, Seh-Won Ahn, Heon-Min Lee, Byungwoo Park,“Analysis of a-Si:H/TCO contact resistance for the Si heterojunction back-contact solar cell” Solar Energy Materials and Solar Cells, Vo l. 120, Part A, Pages 412–416, January 2014
[5] ”Handbook of Photovoltaic Science and Engineering” pp.120 , by Antonio Luque (Editor), Steven Hegedus (Editor), Wiley
[6]楊德仁,”太陽能電池材料”,五南圖書股份有限公司
[7]PV education, absorption coefficient
[8]Green MA, Keevers MJ., “Optical properties of intrinsic silicon at 300 K.”Progress in Photovoltaics: Research and Applications. 1995 ;3:189 - 192.
[9]” SEMICONDUCTORMATERIAL AND DEVICE CHARACTERIZATION”pp.629,by DIETER K.SCHRODER,Wiley
[10]Nova 600i, FEI company
[11] EQE-D-3015, 光焱科技
[12] Jia Zhu,Yi cui,”A solar-cell design based on silicon microwires achieves efficient absorption of sunlight while using only 1% of the active material used in conventional designs.”Nature Materials,Vol. 9, March 2010
[13] P.Spinelli, V.E.Ferry, J.van de Groep, M.van Lare, M.A.Verschuuren, R E.I. Schropp, H.A.Atwater and A.Polman, Plasmonic light trapping in thin-film Si solar cells,”J.Opt.,Vol.14,No.2, pp.024002-1–024002-11,Febuary 2012
[14] M.Foldyna, L.Yu, and P.Roca i Cabarrocas,“Theoretical short-circuit current density for different geometries and organizations of silicon nanowires in solar cells,Solar Energy Materials and Solar Cells, Vol. 117, pp. 645– 651, Octorber2013
[15] J.Kaur Mann, R.Kurstjens, G.Pourtois, M.Gilbert, F.Dross,and J. Poortmans,Opportunities in nanometer sized Si wires for PV applications,”Progr. Mater.Sci.,54 Vol. 58, pp. 1361–1387, Octorber 2013.
[16] I.Gordon,L. Carnel, D.Van Gestel, G. Beaucarne, and J. Poortmans, 8% Efficient thin-film polycrystalline-silicon solar cells based on aluminuminduced crystallization and thermal CVD,”Progr. Photovolt. Res. Appl., Vol. 15, No.7, pp. 575–586, November 2007.
[17] A.Bozzola, M.Liscidini, and L.C. Andreani,Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt.Expr., Vol. 20, No.S2, pp. A224–A244, March 2012
[18] M. Peters, M. R‥udiger, H. Hauser, M. Hermle, and B. Bl‥asi, “Diffractive gratings for crystalline silicon solar cells—Optimum parameters and loss mechanisms,”Progr. Photovolt. Res. Appl., Vol. 20, No.7, pp. 862–873, November 2012.
[19] Valerie Depauw, Xianqin Meng, Ounsi El Daif, Guillaume Gomard, Lo‥ıc Lalouat,Emmanuel Drouard, ”Micrometer-Thin Crystalline-Silicon Solar Cells IntegratingNumerically Optimized 2-D Photonic Crystals” IEEE Journal Of Photovoltaics, Vol. 4,No.1, January 2014.
[20] X. Li , P. W. Bohn , ” Metal-assisted chemical etching in HF/H2O2 produces porous silicon” Vol.77,No.16, OCTOBER 2000.
[21] P. GaO et al., “Efficient light trapping in low aspect-ratio honeycomb nanobowl surface texturing for crystalline silicon solar cell applications”, Applied Physics Letters , vol. 103, pp. 253105-1~253105-4, Dec. 2013..
[22] M. Kulakci et al., “Application of Si Nanowires Fabricated by Metal-Assisted Etching to Crystalline Si Solar Cells”, IEEE Journal of Photovoltaics, vol. 3, No. 1, pp. 548-553, Jan. 2013.
[23] Hele Savin et al., “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency”, Nature nanotechnology ,vol. 10 , May. 2015.
[24] Z. P. Huang et al., “Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions.”, Nano Letter , vol. 9,No. 7 , July. 2009.
[25] Z. P. Huang et al., “Extended Arrays of Vertically Aligned Sub-10 nm Diameter [100] Si Nanowires by Metal-Assisted Chemical Etching”, Nano Letter , vol. 8,No. 9 , July. 2008.
[26] Yoshiko Harada et al., “Catalytic Amplification of the Soft Lithographic Patterning of Si. Nonelectrochemical Orthogonal Fabrication of Photoluminescent Porous Si Pixel Arrays”, Journal of the American chemical society , pp 8709–8717,August 16, 2001



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top