跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 12:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝維哲
研究生(外文):Wei-Che Hsieh
論文名稱:應用於生醫系統之前端讀取電路
論文名稱(外文):Analog Front-End Circuit for Biomedical System
指導教授:呂學士
口試委員:孫台平彭盛裕楊燿州游世安
口試日期:2015-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:108
中文關鍵詞:生物醫學系統單晶片類比前端電路多感測器交流阻抗
外文關鍵詞:BiomedicalSoCanalog front-end circuitmulti-sensorAC impedance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  根據衛生福利部統計,近年來國人十大死因以慢性疾病為大宗,尤以老年人口為好發族群。在這人口結構高齡化和慢性疾病影響的現代社會,人們對於遠距醫療照護的需求愈來愈高,故積體電路系統設計在生物醫學之研究與應用亦成主流。隨著半導體製程技術的進步、以及積體電路設計之成熟,已經能將類比與數位電路結合在一起,使得感測和監測生理訊號之系統單晶片可以被實現,故使用一個偵測生醫訊號之系統晶片,來實踐遠距醫療照護是可行的。
  為了要實踐遠距醫療照護上之生醫訊號監測系統,需處理類比生理訊號,故前端讀取電路在系統內扮演著關鍵性的角色。本論文研究偵測生醫訊號之類比前端電路,並使用TSMC 0.35-μm 之製程技術,完成此前端電路之生物醫學晶片。本論文完成的電路包含:一個可適用於多感測器之介面電路、以及應用於偵測交流阻抗式感測器之讀取電路。

According to statistics of the Ministry of Health and Welfare, chronic disease is one of the leading causes of death, especially in the elderly population. Because of the aging society and the threat of chronic disease, there is a high demand for personal telehealth systems. The research and application in biomedical integrated circuit become a mainstream. Due to the development of semiconductor technology and the integrated circuit design, the analog and digital circuit can be combined into a same chip. A bio-signal sensing and monitoring SoC can be realized. It is possible to develop a bio-signal sensing SoC for telehealth systems.
In order to realize a bio-signal sensing system, an analog front-end circuit plays an important role in processing analog bio-signal. In this thesis, two analog front-end circuits for bio-signal sensing are fabricated in TSMC 0.35-μm process technology. An interface circuit for multi-sensor system and a readout circuit for alternating current (AC) impedance-type sensor are proposed.

摘要......I
Abstract......II

Contents......III
List of Figures......VII
List of Tables......XIII

Chapter 1 Introduction......1
1.1 Motivation......1
1.2 CMOS IC for Biomedical Application......4
1.3 Thesis of Organization......5

Chapter 2 Fundamentals of Analog Front-End Circuit......7
2.1 Introduction......7
2.2 Offset and Noise in the CMOS circuit......10
2.2.1 Basic CMOS Amplifier......10
2.2.2 Offset......11
2.2.3 Noise......12
2.2.4 Thermal Noise......14
2.2.5 Flicker Noise......16
2.3 Low-Offset and Low-Noise Technique......18
2.3.1 Auto-Zero Technique......18
2.3.2 Chopper Technique......22
2.4 Sub-Threshold Conduction Design......31
2.5 The Amplifier in the AFE Circuit......35
2.5.1 Operational Transconductance Amplifier......35
2.5.2 Resistive Feedback Instrumentation Amplifier......38
2.5.3 Current Feedback Instrumentation Amplifier......41
2.5.4 Differential Difference Amplifier......42

Chapter 3 Interface Circuit for Multi-Sensor System......45
3.1 Introduction......45
3.1.1 Sensor......45
3.1.2 Motivation......46
3.2 System Architecture......49
3.2.1 Top View of Interface Circuit......49
3.2.2 Sensor Card......50
3.3 Circuit Implementation......53
3.3.1 Bandgap Reference......53
3.3.2 Two-Stage Operational Amplifier......55
3.4 Simulation......61
3.5 Layout......66
3.6 Measurement......67
3.6.1 Chip Photo......67
3.6.2 Results......68

Chapter 4 Readout Circuit for Alternating Current Impedance-Type Sensor......71
4.1 Motivation......71
4.2 Sensor......74
4.2.1 Sensing Material of Proposed Sensor......74
4.2.2 Electric Properties of Proposed Sensor......76
4.3 System Architecture......80
4.3.1 Techniques of Impedance Measurement......80
4.3.2 Magnitude and Phase Measurement System......84
4.4 Circuit Implementation......88
4.5 Simulation......91
4.5.1 Differential Difference Amplifier......91
4.5.2 Magnitude and Phase Measurement System......94
4.6 Layout......99
4.7 Chip Photo......100

Chapter 5 Conclusion......101

References......103

Chapter 1: Introduction
[1.1] “Milliman Medical Index,” http://www.milliman.com/mmi/

Chapter 2: Fundamentals of Analog Front-End Circuit
[2.1] Sergio Solid-Bustos and Jose Silva-Martinez, “Design considerations for biomedical signal interfaces,” IEEE, 1999.
[2.2] Joseph J. Carr and John M. Brown, "Introduction to Biomedical Equipment Technology," Prentice Hall, 4th edition, Jun. 9, 2000.
[2.3] Johan F. Witte, Kofi A. A. Makinwa, Johan H. Huijsing, "Dynamic Offset Compensated CMOS Amplifiers," Springer, 2009.
[2.4] Boris Murmann, "Advanced Analog Integrated Circuit Design," Stanford University.
[2.5] Behzad Razavi, "Design of Analog CMOS Integrated Circuits," McGraw-Hill, 2001.
[2.6] Enz, C.C.; Temes, G.C.; "Circuit techniques for reducing the effects of op-amp Imperfections: autozeroing, correlated double sampling, and chopper stabilization," Proceedings of the IEEE, vol. 84, no. 11, p. 1584 - 1614, Nov 1996.
[2.7] Enz, C.C.; Vittoz, E.A.; Krummenacher, F.; "A CMOS chopper amplifier," IEEE Journal of Solid-State Circuits, vol. 22, no. 3, p. 335 - 342, Jun 1987.
[2.8] Hsu Yu Pin, "A CMOS Low-noise Analog Front-End IC Design for Biomedical Applications," Master thesis, Graduate Institute of Electronics Engineering, National Taiwan University.
[2.9] Willy M.C. Sansen, "Analog Design Essentials," Springer, 2006.
[2.10] Yazicioglu, R.F.; Merken, P.; Puers, R.; Van Hoof, C.; "A 60μW 60 nV/√Hz Readout Front-End for Portable Biopotential Acquisition Systems," IEEE Journal of Solid-State Circuits, vol. 42, no. 5, p. 1100 - 1110, May 2007.
[2.11] G. Nicollini and C. Cuardiani, "A 3.3-V 800nVrms Noise, Gain-Programmable CMOS Microphone Preamplifier Design," IEEE Journal of Solid- State Circuits, vol. 28, no. 8, p.915 - 921, Aug. 1993.

Chapter 3: Interface Circuit for Multi-Sensor System
[3.1] Renesas, "Smart Analog: Enabling Smarter Sensors," http://www.renesas.com/products/smart_analog/index.jsp
[3.2] C.H. Chang, S.R. Chang, J.S. Lin, Y.T. Lee, S.R. Yeh and H. Chen, "A CMOS neuroelectronic interface based on two-dimensional transistor arrays with monolithically-integrated circuitry," Biosensors & Bioelectronics 24 (2009) 1757 - 1764.
[3.3] Chang-Hung Lee, Wen-Yu Chuang, Melissa A. Cowan, Wen-Jung Wu and Chih-Ting Lin, "A Low-Power Integrated Humidity CMOS Sensor by Printing-on-Chip Technology," Sensors 2014, 14 (5), 9247 - 9255.
[3.4] Young Gun Ko, Seung Su Shin, Ung Su Choi, "Primary, secondary, and tertiary amines for CO2 capture: Designing for mesoporous CO2 adsorbents," Journal of Colloid and Interface Science, vol. 361, issue 2, 15 Sep. 2011, p. 594 – 602.
[3.5] Gerard C. M. Meijer, Guijie Wang, and Fabiano Fruett, "Temperature Sensors and Voltage References Implemented in CMOS Technology," IEEE Sensors Journal, vol. 1, no. 3, Oct. 2001.
[3.6] Klaas-Jan de Langen and Johan H. Huijsing, "Compact Low-Voltage Power-Efficient Operational Amplifier Cells for VLSI," IEEE Journal of Solid-State Circuits, vol. 33, no. 10, Oct. 1998.
[3.7] B. A. Minch, "A Low-Voltage MOS Cascode Bias Circuit for All Current Levels," IEEE International Symposium on Circuits and Systems, vol. 3, p. 619 - 622, 2002.
[3.8] Po-Shen Chen, “Integrated Interface Circuits for Dielectric-Constant Measurement in Non-Invasive Material Sensing Systems,” Master Thesis, Department of Electrical Engineering, National Taiwan University of Science and Technology, 2013.

Chapter 4: Readout Circuit for Alternating Current Impedance-Type Sensor
[4.1] Charles K. Alexander and Matthew Sadiku, "Fundamentals of Electric Circuits," McGraw-Hill, 2008
[4.2] Tin C. D. Doana, Rajesh Ramaneti, Jacob Baggerman, J. Franc van der Bent, Antonius T. M. Marcelis, Hien D. Tong, Cees J. M. van Rijn, "Carbon Dioxide Sensing with Sulfonated Polyaniline," Sensors and Actuators B, 168 (2012), p. 123 - 130.
[4.3] Panagiotis Kassanos, Iasonas F. Triantis and Andreas Demosthenous, "A CMOS Magnitude/Phase Measurement Chip for Impedance Spectroscopy," IEEE Sensors Journal, vol. 13, no. 6, Jun. 2013.
[4.4] M. Rahal and A. Demosthenous, "A Synchronous Chopping Demodulator and Implementation for High-Frequency Inductive Position Sensors," IEEE Transactions on Instrumentation and Measurement, vol. 58 , p. 3693 - 3701, Oct. 2009.
[4.5] C. S. Koukourlis, V. K. Trigonidis and J. N. Sahalos, "Differential Synchronous Demodulation for Small-Signal Amplitude Estimation," IEEE Transactions on Instrumentation and Measurement, vol. 42, no. 5, p. 926 - 931, Oct. 1993.
[4.6] M. Min, T. Parve, A. Ronk, P. Annus and T. Paavle, "Synchronous Sampling and Demodulation in an Instrument for Multifrequency Bioimpedance Measurement," IEEE Transactions on Instrumentation and Measurement, vol. 56, no. 4, p. 1365 - 1372, Aug. 2007.
[4.7] P. Kassanos, I. F. Triantis and A. Demosthenous, "A Novel Front-End for Impedance Spectroscopy," IEEE Sensors, p. 327 - 330, Oct. 2011.
[4.8] Yu-Jie Huang, “Design and Implementation of Fully-Integrated Smart CMOS Biomedical SoCs,” Doctoral Dissertation, Graduate Institute of Electronis Engineering, National Taiwan University, 2014.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top