跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/07/28 02:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳家偉
研究生(外文):Chia-Wei Chen
論文名稱:適用於多使用者及多點協調通訊之多輸入多輸出預編碼器設計
論文名稱(外文):A MIMO Precoder Design for Downlink Coordinated Multipoint Communication
指導教授:曹恆偉曹恆偉引用關係
指導教授(外文):Hen-Wai Tsao
口試委員:吳安宇黃元豪陳喬恩李楊漢
口試委員(外文):An-Yeu WuYuan-Hao HuangChiao-En ChenYang-Han Lee
口試日期:2015-07-01
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:112
中文關鍵詞:多點協調傳輸多輸入多輸出預編碼器QR分解向量預編碼器
外文關鍵詞:Coordinated multipointmultiple-input multiple-output precodingQR decompositionvector precoding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
針對多點協調下行傳輸系統,本研究提出一個使用互補QR分解的多輸入多輸出預編碼器設計。本研究首先是在兩個協調基地台通道中,採用不同的並且互補的通道排序來設計互補QR分解型預編碼器。相較於傳統QR分解,從統計上來觀察透過使用互補QR分解的空間等效次通道,具有較接近的通道能量分布。
此外,利用相互排序演算法可以進一步設計出適用於各種基地台數量的互補QR分解型預編碼器。此相互排序演算法使得互補QR分解型預編碼器可以不受限於基地台的使用數量外,還可以找出用於互補QR分解型編碼器中較佳的互補通道排序,進而提升其性能。
由於傳統以及常見的湯林森-何洛緒瑪預編碼(Tomlinson–Harashima precoding)消除干擾的方式不能使用在我們提出的互補QR分解型預編碼器,因此我們採用向量預編碼(vector precoding)的方式來消除干擾。從理論與模擬結果都可以看出基於互補QR分解所設計出的預編碼器都有較好的通道增益。在多點協調傳輸環境中,與現存的QR分解預編碼器相比,互補QR分解型預編碼器在訊雜比上有著2–5 dB的增進。

This study presents a multiple-input multiple-output (MIMO) precoder with a compensated QR-decomposition (CQRD) combination for coordinated multipoint (CoMP) downlink transmission. Unlike conventional QR-decomposition (QRD) combination, CQRD combination adopts compensated channel matrix orderings. This study first proposes CQRD combination for CoMP scenarios. The statistics for combined spatial subchannel gains with a CQRD combination of two coordinated base stations (BSs) are derived, and these statistics show that more balanced subchannel gains are generated with a CQRD combination than with a QRD combination.
Furthermore, this study proposes a generalized CQRD combination scheme with a joint sorting strategy that can be applied to scenarios with more than two coordinated BSs. Unlike the unsorted strategy, the joint sorting strategy determines an enhanced compensated combination to further increase spatial subchannel gains; therefore, the performance can be upgraded.
Because conventional Tomlinson–Harashima precoding (THP) cannot be used in the CQRD combination, interference presubtraction and vector precoding (VP) is adopted. Theoretical analysis and simulation results are both provided to demonstrate the advantages of higher spatial subchannel gains in the proposed CQRD-based schemes. Compared with existing QRD-based MIMO precoders in CoMP scenarios, the proposed CQRD-based schemes have substantial SNR improvements of 2–5 dB.

誌謝…………………………………………………………………………I
摘要………………………………………………………………………III
Abstract…………………………………………………………………IV
Contents…………………………………………………………………VI
List of Figures………………………………………………………VIII
List of Tables……………………………………………………………X
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation and Research Contributions 6
1.3 Dissertation Organization 8
Chapter 2 MIMO Precoders in Single Cell 10
2.1 System Model for SU-MIMO Scheme in Single Cell 11
2.1.1 ZF Precoding 13
2.1.2 MMSE Precoding 14
2.1.3 SVD Precoding 16
2.1.4 QRD-THP Scheme 17
2.1.5 GMD-THP Scheme 21
2.1.6 BER Comparison 23
2.2 System Model for MU-MIMO in Single Cell 25
2.2.1 BD Algorithm 27
2.2.2 BD-SVD 28
2.2.3 BD-GMD 29
2.3 System Model in CoMP 30
2.3.1 QRD-THP Schemes in CoMP Scenarios 32
2.4 Summary 37
Appendix 2-A Precoding Loss 38
Appendix 2-B GMD Algorithm 40
Chapter 3 Introduction to Equal-Rate QRD-MMSE Precoding for MU-MIMO in Single Cell 43
3.1 Equal-Rate Zero-Forcing Based Precoder 45
3.2 Equal-Rate MMSE Based Precoder 49
3.3 Sorting Strategies 53
3.4 BER Comparison 57
3.5 Summary 61
Chapter 4 Proposed CQRD-VP in CoMP Scenarios for Two BSs 62
4.1 CQRD Combination in CoMP 63
4.2 CQRD-VP in CoMP 70
Appendix 4-A Precoding Loss of CQRD-VP 74
Appendix 4-B Search Complexity of DFS Sphere Encoding 76
Chapter 5 Proposed Joint Sorted CQRD-VP in CoMP Scenarios 78
5.1 Joint Sorted CQRD Combination in CoMP Scenarios 78
5.2 JS-CQRD-VP in CoMP Scenarios 92
5.3 Numerical Example 93
Chapter 6 Conclusion and Future Work. 100
6.1 Conclusion 100
6.2 Future Work 102
6.2.1 Reduce the backhaul complexity in CoMP 102
6.2.2 Adopt Error detection and correction 102
References 103

[1] 3GPP TR 36.819, “Coordinated multi-point operation for LTE physical layer aspects,” 2011.
[2] Z. Feng, M. Wu, H. Lu, “Coordinated Multi-Point Transmission and Reception for LTE-Advanced,” 5th International Conference on Wireless Communications, Networking and Mobile Computing, pp.1-4, 2009.
[3] Q. Wang, D. Jiang, G. Liu, Z. Yan, “Coordinated Multiple Points Transmission for LTE-Advanced Systems,” 5th International Conference on Wireless Communications, Networking and Mobile Computing, pp.1-4, 2009.
[4] H. Asakura, T. Matsumoto , “Cooperative signal reception and down-link beam forming in cellular mobile communications,” IEEE Trans. Vehi. Technol., vol.48, no.2, pp.333-341, 1999.
[5] M.K. Karakayali, G.J. Foschini, R.A. Valenzuela, “Network coordination for spectrally efficient communications in cellular systems,” IEEE Wireless Communications, vol.13, no.4, pp.56-61, 2006.


[6] D. Gesbert, S. Hanly, H. Huang, S. Shamai Shitz, O. Simeone, W. Yu, “Multi-Cell MIMO Cooperative Networks: A New Look at Interference,” IEEE Journal on Selected Areas in Communications, vol.28, no.9, pp.1380-1408, 2010.
[7] Y. Cheng, V.K.N. Lau, Y. Long, “A Scalable Limited Feedback Design for Network MIMO Using Per-Cell Product Codebook,” IEEE Trans. on Wireless Commun., vol.9, no.10, pp.3093-3099, 2010.
[8] G. J. Foschini, M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Personal Commun., vol. 6, no. 3, pp. 311–335, 1998.
[9] C.B. Peel, B.M. Hochwald and A.L. Swindlehurst, “A vector-perturbation technique for near-capacity multiantenna multiuser communication-part I: channel inversion and regularization,” IEEE Trans. on Commun., vol.53, no.1, pp.195-202, 2005.
[10] S. Lin, W.W.L. Ho, Y.-C. Liang, “MIMO Broadcast Communications Using Block-Diagonal Uniform Channel Decomposition (BD-UCD),” Proc. IEEE Int. Symp. Pers., Indoor, Mobile Radio Commun., pp.1-5, 2006.
[11] F. Liu, L. Jiang, C. He, “Advanced Joint Transceiver Design for Block-Diagonal Geometric-Mean-Decomposition-Based Multiuser MIMO Systems,” IEEE Trans. on Vehi. Technol., vol.59, no.2, pp.692-703, Feb. 2010.
[12] W. Liu, L.-L. Yang, L. Hanzo , “SVD-Assisted Multiuser Transmitter and Multiuser Detector Design for MIMO Systems,” IEEE Trans. on Vehi. Technol., vol.58, no.2, pp.1016-1021, 2009.
[13] M. Ma, X. Huang, B. Jiao, Y.J. Guo, “Optimal Orthogonal Precoding for Power Leakage Suppression in DFT-Based Systems,” IEEE Trans. on Commun., vol.59, no.3, pp.844-853, 2011.
[14] C.-T. Lin, W.-R. Wu, “QRD-based precoder selection for maximum-likelihood MIMO detection,” IEEE 21st International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp.455-460, 2010.
[15] Z.-Y. Huang, P.-Y. Tsai, “Efficient Implementation of QR Decomposition for Gigabit MIMO-OFDM Systems,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol.58, no.10, pp.2531-2542, 2011.
[16] C.-P. Wu, J.-M. Wu, “Low complexity channel decomposition for spatial multiplexing MIMO systems,” IEEE 9th Workshop on Signal Processing Advances in Wireless Communications, pp.156-160, 2008.
[17] W. Liu, C. Li, J.-D. Li, L. Hanzo, “Geometric-Mean-Decomposition-Based Optimal Transceiver for a Class of Two-Hop MIMO-Aided Amplify-and-Forward Relay Channels,” IEEE Trans. on Vehi. Technol., vol.63, no.2, pp.948-952, 2014.
[18] W.-D. Chen, Y.-T. Hwang, “A Constant Throughput Geometric Mean Decomposition Scheme Design for Wireless MIMO Precoding,” IEEE Trans. on Vehi. Technol., vol.62, no.5, pp.2080-2090, 2013.
[19] Y. Jiang, J. Li, W. W. Hager, “Joint transceiver design for MIMO communications using geometric mean decomposition,” IEEE Trans. on Signal Process. , vol.53, no.10, pp.3791-3803, 2005.
[20] Y. Jiang, J. Li, “Uniform channel decomposition for MIMO communications,” Conference on Signals, Systems and Computers, 2004, vol.1, pp.856-860, 2004.
[21] Y. Jiang, J. Li, W. W. Hager, “Uniform channel decomposition for MIMO communications,” IEEE Trans. Signal Process., vol.53, no.11, pp.4283-4294, 2005.
[22] D. Lu, D. Li, “A Novel Precoding Method for MIMO Systems with Multi-Cell Joint Transmission,” Proc. VTC 2010, pp.1-5, 2010.
[23] B. Wang, B. Li and M. Liu, “A Novel Precoding Method for Joint Processing in CoMP,” Proc. Int. NCIS, vol.1, pp.126-129, 2011.
[24] D. Wubben, R. Bohnke, V. Kühn and K.-D Kammeyer, “MMSE extension of V-BLAST based on sorted QR decomposition,” Proc. VTC 2003, vol.1, pp.508-512, 2003.


[25] C.-W. Chen, H.-W. Tsao and P.-Y. Tsai, “Equal-rate QR decomposition based on MMSE technique for multi-user MIMO precoding,” Proc. IEEE Int. Symp. Pers., Indoor, Mobile Radio Commun., pp.435-440, 2013.
[26] C. Masouros, M. Sellathurai and T. Ratnarajah, “Interference Optimization for Transmit Power Reduction in Tomlinson-Harashima Precoded MIMO Downlinks,” IEEE Trans. on Signal Process., vol.60, no.5, pp.2470-2481, 2012.
[27] M. Tomlinson, “New automatic equaliser employing modulo arithmetic,” Electronics Letters, vol.7, no.5, pp.138-139, March 25, 1971.
[28] H. Harashima and H. Miyakawa, “Matched-Transmission Technique for Channels With Intersymbol Interference,” IEEE Trans. on Commun., vol.20, no.4, pp.774-780, 1972.
[29] W. Yu, D.P. Varodayan and J.M. Cioffi, “Trellis and convolutional precoding for transmitter-based interference presubtraction,” IEEE Trans. on Commun. , vol.53, no.7, pp.1220-1230, 2005.
[30] M. H. M. Costa, “Writing on dirty paper (Corresp.),” IEEE Trans. on Information Theory, vol.29, no.3, pp.439-441, 1983.


[31] U. Erez, S. Shamai and R. Zamir, “Capacity and lattice strategies for canceling known interference,” IEEE Trans. on Information Theory, vol.51, no.11, pp.3820-3833, 2005.
[32] H. El-Gamal, G. Caire and M.-O. Damen, “Lattice coding and decoding achieve the optimal diversity-multiplexing tradeoff of MIMO channels,” IEEE Trans. on Information Theory, vol.50, no.6, pp.968-985, 2004.
[33] B. M. Hochwald, C. B. Peel, A. L. Swindlehurst, “A vector-perturbation technique for near-capacity multiantenna multiuser communication-part II: perturbation,” IEEE Trans. Commun., vol.53, no.3, pp.537-544, 2005.
[34] N.-D. Dao, F. Cao, “Generalized perturbation signal and decoder for multiuser MIMO vector perturbation precoding,” 2012 IEEE Consumer Communications and Networking Conference (CCNC), pp.822-826, 2012.
[35] M. Mazrouei-Sebdani, W.A. Krzymien, “On MMSE vector-perturbation precoding for MIMO broadcast channels with per-antenna-group power constraints,” IEEE Trans. on Signal Process., vol.61, no.15, pp.3745-3751, 2013.
[36] E.C.Y. Peh, Y.-C. Liang, “Power and modulo loss tradeoff with expanded soft demapper for LDPC coded GMD-THP MIMO systems,” IEEE Trans. on Wireless Commun., vol.8, no.2, pp.714-724, 2009.
[37] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans. on Signal Process., vol. 52, pp. 461–471, Feb. 2004.
[38] J. Park, B. Lee and B. Shim, “A MMSE Vector Precoding with Block Diagonalization for Multiuser MIMO Downlink,” IEEE Trans. on Commun., vol.60, no.2, pp.569-577, 2012.
[39] H. Sung, S.-R. Lee, I. Lee, “Generalized channel inversion methods for multiuser MIMO systems,” IEEE Trans. on Commun., vol.57, no.11, pp.3489,3499, Nov. 2009
[40] S. Lin, W.W.L. Ho and Y.-C. Liang, “Block diagonal geometric mean decomposition (BD-GMD) for MIMO broadcast channels,” IEEE Trans. on Wireless Commun., vol.7, no.7, pp.2778-2789, 2008.
[41] F. Liu, L. Jiang, C. He, “Advanced Joint Transceiver Design for Block-Diagonal Geometric-Mean-Decomposition-Based Multiuser MIMO Systems,” IEEE Trans. on Vehi. Technol., vol.59, no.2, pp.692-703, 2010.
[42] W.W.L. Ho, Y.-C. Liang, “User Ordering and Subchannel Selection for Power Minimization in MIMO Broadcast Channels using BD-GMD,” IEEE 68th Vehicular Technology Conference, pp.1-5, 2008.

[43] B. Hassibi, “A fast square-root implementation for BLAST,” Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers, 2000, vol.2, pp.1255-1259, 2000.
[44] C.-H. Lin and P.-Y. Tsai, “A reduced-complexity multi-user MIMO precoding scheme with sorted-QR decomposition and block-based power allocation,” International Conference on Telecommunications (ITST), pp.658-662, 2011.
[45] L. Jun, W. Yanwen, “Research of BD_UCD_VBLAST for MU_MIMO Precoding Technique,” 2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), pp.406-409, 2010.
[46] R. A. Horn and C. R. Johnson, "QR factorization and algorithm," in Matrix Analysis, Cambridge, Cambridge University Press, 1985, pp. 112.
[47] S. Lin, W.W.L. Ho, Y.-C. Liang, “MIMO Broadcast Communications Using Block-Diagonal Uniform Channel Decomposition (BD-UCD),” 2006 IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications, pp.1-5, 2006.
[48] S.-H. Liu, “Comparisons of Two Real-Valued MIMO Signal Models and Their Associated ZF-SIC Detectors over the Rayleigh Fading Channel,” IEEE Trans. Wireless Commun., vol.12, no.12, pp.6054-6066, 2013.

[49] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and H.Bolcskei, “VLSI implementation of MIMO detection using the sphere decoding algorithm,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp.1566–1577, 2005.
[50] L. G. Barbero, J. S. Thompson, “A Fixed-Complexity MIMO Detector Based on the Complex Sphere Decoder,” in Proc. IEEE SPAWC, pp.1-5, 2006.
[51] L.G. Barbero, J.S. Thompson, “Fixing the Complexity of the Sphere Decoder for MIMO Detection,” IEEE Trans. on Wireless Commun., vol.7, no.6, pp.2131-2142, 2008.
[52] A. Garcia-Rodriguez and C. Masouros, "Power Loss Reduction for MMSE-THP With Multidimensional Symbol Scaling," IEEE Communications Letters, vol.18, no.7, pp. 1147-1150, July 2014.
[53] R. Zhang, "Cooperative Multi-Cell Block Diagonalization with Per-Base-Station Power Constraints," IEEE Journal on Selected Areas in Communications, vol.28, no.9, pp. 1435-1445, 2010.
[54] A. Paulraj, R. Nabar, and D. Gore, "Introduction to Space-Time Wireless Communications", Cambridge, U.K.: Cambridge Univ. Press, 2003.
[55] A. van Zelst and J. S. Hammerschmidt, "A single coefficient spatial correlation model for multiple-input multiple-output (MIMO) radio channels, " in Proc. of 27th General Assembly of the URSI, pp. 1-4, 2002.
[56] C. Forbes, M. Evans, N. Hastings, and B. Peacock, "Chi Distribution," in Statistical Distributions, 4th ed., New Jersey, John Wiley & Sons, 2011, pp. 73.
[57] C. Zhang, H. Prabhu, Y. Liu, L. Liu, O. Edfors, V. Owall, "Energy Efficient Group-Sort QRD Processor With On-Line Update for MIMO Channel Pre-Processing," IEEE Transactions on Circuits and Systems I: Regular Papers, vol.62, no.5, pp.1220-1229, May 2015.
[58] P. Luethi, C. Studer, S. Duetsch, E. Zgraggen, H. Kaeslin, N. Felber, W. Fichtner, "Gram-Schmidt-based QR decomposition for MIMO detection: VLSI implementation and comparison," IEEE Asia Pacific Conference on Circuits and Systems, 2008 , vol., no., pp.830-833, 2008.
[59] Jeng-Shin Sheu; Chia-Hui Hsieh, "Joint Preprocessing Techniques for Downlink CoMP Transmission in Multipath Fading Channels," Vehicular Technology Conference (VTC Spring), 2012 IEEE 75th , vol., no., pp.1,5, 6-9 May 2012


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文