跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/07/28 04:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃芷琳
研究生(外文):Chih-Ling Huang
論文名稱:以X射線光電子能譜儀研究生長於銻磷砷化銦上之原生氧化層特性
論文名稱(外文):Properties of native oxide on InAsPSbstudied by X-ray photoelectron spectroscopy
指導教授:林浩雄林浩雄引用關係
指導教授(外文):Hao-Hsiung Lin
口試委員:胡振國吳志毅毛明華
口試日期:2015-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:51
中文關鍵詞:銻磷砷化銦原生氧化層XPSvalence band spectraVFF model
外文關鍵詞:InAsPSbnative oxideXPSvalence band spectraVFF model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究主題為以X射線光電子能譜儀(XPS)研究生長於銻磷砷化銦上之原生氧化層特性。利用peak area ratio、VFF model、valence band spectra、氧化物厚度、氧化物組成來分析原生氧化層薄膜特性。
由peak area ratio與氧化物厚度結果發現當氧化物厚度維持定值時,合金中元素成分越多,該元素peak area ratio就越小。由氧化物厚度分析發現到,二元InAs中As氧化物厚度約5 Å,而不同基板(為GaAs與InAs基板)的四元InAsPSb中As等效氧化物厚度約2 Å,顯示合金可有效降低As的氧化物厚度;在GaAs及InAs基板上的合金中,In氧化物厚度均變動不大,而五族氧化物厚度因Sb氧化物厚度上升而明顯增厚,造成四元合金總氧化厚度上升,推測此現象與合金畸變能有關。
最後由valence band spectra與氧化組成分析發現,在GaAs、InAs兩種基板上,畸變能較小的三片樣品其原生氧化層組成均為In rich,而畸變能較大的三片樣品其原生氧化層組成均為group V rich,此現象與Sb氧化物隨畸變能增厚有關。

In this thesis, we demonstrate the properties of native oxide on InAsPSb studied by X-ray Photoelectron Spectroscopy. We utilize peak area ratio, VFF model, valence band spectra, oxide layer thickness and oxide composition to analyze the native oxide layer.
From peak area ratio and oxide layer thickness results, we find when the oxide layer thickness remains steady, the element’s peak area ratio will decrease as the element composition of the alloy increase. From the oxide layer thickness analysis, the As oxide layer thickness of InAs binary is about 5 Å. Whereas the As oxide layer thickness of InAsPSb alloy with different substrates (including the GaAs and InAs substrates) are about 2 Å, indicating that the alloy can reduce the As oxide layer thickness effectively. For the alloys on the GaAs and InAs substrates, the thickness of In oxide layer changes slightly; however, group V oxide layer thickness increases obviously owing to Sb, which make the total oxide thickness increase. We suggest that the distortion energy may be responsible for the phenomenon.
Finally, analysis from the valence band spectra and oxide composition results, for the GaAs and InAs substrates, alloy with lower distortion energy shows oxide layer with In rich characteristic; on the other hand, alloy with higher distortion energy shows oxide layer rich in group V elements.

致謝 I
中文摘要 II
Abstract III
目錄 V
附表索引 VII
附圖索引 IX
第一章 序論
1.1 研究動機 1
1.2 論文架構 2
第二章 實驗原理與架構
2.1 實驗步驟 5
2.2 X射線光電子能譜儀之原理與量測 5
2.3 XPS能譜擬合軟體 CasaXPS 7
2.3.1 CasaXPS介紹 7
2.3.2 擬合步驟 8
2.4 紫外光電子能譜儀之原理 12
2.5 價力場模型 13
2.5.1 VFF model介紹 13
2.5.2 VFF model 實驗步驟 15
第三章 實驗結果與討論
3.1 XPS擬合結果 23
3.2 氧化層厚度 24
3.2.1 計算表面氧化層厚度 24
3.2.2 氧化層厚度分析 27
3.3 Peak Area Ratio (P.A.R.) 28
3.3.1 Peak Area Ratio 之定義與計算過程 28
3.3.2 Peak Area Ratio 結果分析 29
3.4 氧化層之氧化物組成 30
3.4.1 計算表面氧化物組成 30
3.4.2 氧化物組成分析 31
3.5 Valence band spectra氧化物組成分析 32
第四章 結論…………………………………………………………47
第五章 參考文獻…………………………………………………...48


[1]O. Tadanaga, T. Yanaqawa, and M. Asobe, “Mid-infrared wavelength conversion laser for highly sensitive gas detection,” NTT. Tech. Rev., vol. 7, pp. 1, 2009.
[2]R. Steiner, “Medical applications of mid-IR solid-state lasers,” in Mid-Infrared Coherent Sources and Applications, ed: Springer, pp. 575, 2008
[3]J. M. Porter, J. B. Jeffries, and R. K. Hanson, “Mid-infrared laser-absorption diagnostic for vapor-phase measeurments in an evaporating n-decane aerosol,” Appl. Phys. B: Lasers Opt., vol. 97, pp. 215, 2009.
[4]Y. Zhang, W. Gao, Z. Song, Y. An, L. Li, Z. Song, W. W. Yu, and Y. Wang, “Design of a novel gas sensor structure based on mid-infrared absorption spectrum,” Sens. Actuators, B, vol. 147, pp. 5, 2010.
[5]J. Cihelka, I. Matulková, and S. Civiš, “Laser diode photoacoustic and FTIR laser spectroscopy of formaldehyde in the 2.3 μm and 3.5 μm spectral range,”J. Mol. Spectrosc., vol. 256, pp. 68, 2009.
[6]A. Borin and R. J. Poppi, “Application of mid infrared spectroscopy and iPLS for the quantification of contaminants in lubricating oil,” Vib. Spectro., vol. 37, pp. 27, 2005.
[7]S.-I. Chou, D. S. Baer, R. K. Hanson, W. Z. Collison, and T. Q. Ni, “HBr concentration and temperature measurements in a plasma etch reactor using diode laser absorption spectroscopy,” J. Vac. Sci. Technol., A, vol. 19, pp. 477, 2001.
[8]A. Krier and Y. Mao, “2.5 μm light-emitting diodes in InAs0.36Sb0.20P0.44/InAs for HF detection,” IEE Proc.-Optoelectron., vol. 144, pp. 355,1997.
[9]A. Serpengüzel, S. Arnold, and G. Griffel, “Excitation of resonances of microspheres on an optical fiber,” Opt. Lett., vol. 20, pp.654, 1995.
[10] E. A. Grebenshchikova, V. V. Sherstnev, S. S. Kizhaev, T. B. Popova, and Y. P. Yakovlev,“Creating disk-shaped cavity with a vertical side surface for infrared whispering-gallery-mode laser(λ≈3 μm),” Tech. Phys. Lett., vol. 34, pp. 953, 2008.
[11]N. S. Averkiev, A. P. Astakhova, E. A. Grebenshchikova, N. D. Il’inskaya, K. V. Kalinina, S. S. Kizhaev, A. Y. Kislyakova, A. M. Monakhov, V. V. Sherstnev, and Y. P. Yakovlev,“Continuous-wave disk WGM lasers(λ=3.0 μm) based on InAs/InAsPSb heterostructures,” Semicond., vol. 43, pp. 117, 2009.
[12]B. B. Jin, J. H. Zeng, Y. F. Wang, Q. Yang,“Unifrom single-crystalline zinc oxide round nanodisks, a comprehensive study on the hydrothermal growth,” Mater. Lett., vol. 85, pp. 7, 2012.
[13]李劭皇,“銻化鎵與銻磷砷化銦的選擇性蝕刻研究,”臺灣大學電子工程學研究所, 2013.
[14]D. Zhuang, J. H. Edgar,“Wet etching of GaN, AlN, and SiC: a review,” Mater. Sci. Eng., R, vol. 48, pp. 1, 2005.
[15]W. K. Liu, W. T. Yuen, and R. A. Stradling,“Preparation of InSb substrates for molecular beam epitaxy,” J. Vac. Sci. Technol., B, vol. 13, pp. 1539, 1995.
[16]G. Hollinger, R. Skheyta-Kabbni, and M. Gendry, “Oxides on GaAs and InAs surfaces: An x-ray-photoelectron-spectroscopy study of reference compounds and thin oxide layers,” Phys. Rev. B, vol. 49 , pp. 159, 1994.
[17]R. Timm, A. Fian, M. Hjort, C. Thelander, E. Lind, J. N. Andersen, L.-E. Wernersson, and A. Mikkelsen,“Reduction of native oxides on InAs by atomic layer deposited Al2O3 and HfO2,” Appl. Phys. Lett., vol. 97, pp. 132904, 2010.
[18]J. Wu, E. Lind, R. Timm, M. Hjort, A. Mikkelsen, and L.-E. Wernersson,“Al2O3/InAs metal-oxide-semiconductor capacitors on (100) and (111)B substrates,” Appl. Phys. Lett., vol. 100, pp. 132905, 2012.
[19]A. M. Venezia,“X-ray photoelectron spectroscopy (XPS) for catalysts characterization,” Catal. Today., vol. 77, pp. 359, 2003.
[20]J. F. Wtts, and J. Wolstenholme,“An introduction to surface analysis by XPS and AES,” ed: Wiley, 2003.
[21]N. Fairley,“CasaXPS manual 2. 3. 15: Introduction to XPS and AES,” ed: Casa Software Ltd., 2009.
[22]J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben,“Handbook of x-ray photoelectron spectroscopy,” ed: Perkin-Elmer Corporation Physical Electronics Division, 1992.
[23]劉尚奕,“交流電驅動有機發光二極體及自組裝分子修飾石墨烯場效電積體之特性研究,”臺灣大學光電工程學研究所, 2014.
[24]R. M. Martin,“Elastic properties of ZnS structure semiconductors,” Phys. Rev. B, vol. 1, pp. 4005, 1970.
[25]M. I. Alonso and K. Winer,“Raman spectra of c-Si1−xGex alloys,” Phys. Rev. B, vol. 39, pp. 10056, 1989.
[26]C. R. Brundle,“Elucidation of surface structure and bonding photoelectron spectroscopy?,” Surf. Sci.,vol. 48, pp. 99, 1975.
[27]M. P. Seah and W. A. Dench,“Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids,” Surf. Interface Anal., vol. 1, pp. 2, 1979.
[28]任殿勝,王為,李雨辰,嚴如岳, “GaAs(100)表面氧化的XPS研究,”化學物理學報, vol. 17, pp. 87, 2003.
[29]陳冠達,“成長在砷化鎵的銻磷砷化銦薄膜晶格結構研究,”臺灣大學電子工程學研究所, 2012.
[30]O. Lang, C. Pettenkofer, J. F. Sánchez-Royo, A. Segura, A. Klein, and W. Jaegermann,“Thin film growth and band lineup of In2O3 on the layered semiconductor InSe,” J. Appl. Phys., vol. 86, pp. 5687, 1999.
[31]F. Rüggeberg and A. Klein,“The In2O3/CdTe interface: A possible contact for thin film solar cells?,” Appl. Phys. A, vol. 82, pp. 281, 2006.
[32]J. X.Wu, M. S. Ma, X. M. Liu, J. S. Zhu, M. R. Ji, P. S. Xu, and T. X. Zhao,“Interaction of oxygen with a Rb-covered InSb(111) surface,” Phys. Rev. B, vol. 51, pp. 14286, 1995.
[33]V. K. Mittal, S. Bera, V. Sankaralingam, and N. S. veeravalli,“Studies on sorption of antimony on carbon steel surface in chemical decontamination medium,” J. Nucl. Sci. Technol., vol. 48, pp. 256, 2011.
[34]G. Hollinger, E. Bergigant, J. Joseph, and Y. Robach,“On the nature of oxides on InP surfces,” J. Vac. Sci. Technol., A, vol. 3, pp. 2082, 1985.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文