跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 18:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉馥瑋
研究生(外文):Fu-Wei Liu
論文名稱:氧化鋁/砷化銦金氧半電容元件特性改善與累積區頻散分析
論文名稱(外文):Characteristic Improvement of Al2O3/InAs Metal-Oxide-Semiconductor Capacitor and Analysis of Accumulation Frequency Dispersion
指導教授:林浩雄林浩雄引用關係
口試委員:毛明華陳敏璋胡振國
口試日期:2015-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:63
中文關鍵詞:砷化銦氧化鋁原子層沉積金氧半電容化學處理邊緣缺陷累積區頻散
外文關鍵詞:InAsAl2O3ALDMOS-CapFermi level pinningChemical treatmentBorder trapAccumulation frequency dispersion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對不同之處理改善氧化鋁(Al2O3)/砷化銦(InAs)之金氧半電容元件(Metal-oxide-semiconductor capacitor, MOS-Cap)之元件特性進行探討。透過三甲基鋁(Try-methyl-aluminum, TMA)前置處理搭配氨水(NH4OH)化學處理,在X射線光電子能譜分析中發現,成功有效的降低砷化銦之原生氧化物比例。再引入硝酸後氧化處理與沉積後退火處理後,有效減少了氧化層內之邊緣缺陷(Border trap),降低累積區頻散現象,並透過引入金屬後退火製程,改善費米能階釘札現象與磁滯現象。完成之元件,累積區頻散率為 1.42 %/dec、電容調變率為 31.4 %,與磁滯電壓變化為 150 mV。
透過累積區頻散之等效電路模型,我們成功擬合累積區之頻散電容,並且從中擬合出氧化層電容 COX;藉由擬合之氧化層電容,我們可由 G-V 求得室溫下最低之介面缺陷密度為 1.77*10^13 /eV*cm^2。在 5.3 奈米之等效氧化層厚度下,閘極電壓 ±1 V 內維持 2×10^-8 A/cm^2 低漏電流密度特性。

In this study, we use different treatments to improve the characteristic Metal-oxide-semiconductor capacitor (MOS-Cap) of Al2O3 on InAs. We applied the Try-methyl-aluminum (TMA) pretreatment plus NH4OH chemical treatment before oxide growth, and the native oxide was effectively reduced, which is confirmed by XPS. We also applied the HNO3 post oxidation and post deposition annealing, and the border trap in oxide was effectively reduced and the accumulation frequency dispersion was suppressed. Then, we applied post metal annealing to improve the Fermi level pinning effect and hysteresis effect. Finally, the accumulation frequency dispersion value, the capacitance modulation, n-factor, and the hysteresis voltage of our device are 1.42 %/dec, 31.4 %, 0.14 and 150 mV.
By using the effective circuits of border trap, we can fit our capacitance in accumulation and fit our oxide capacitance. The interface trap density of 1.12×10^13 /eV*cm^2 was extracted by using the fitting oxide capacitance and G-V method. The low leakage current density of 2×10^-8 A/cm^2 at ±1 V was also obtained.

目錄


中文摘要............................................................................................................................I
Abstract.............................................................................................................................II
誌謝.................................................................................................................................III
圖目錄.............................................................................................................................VI
表目錄..........................................................................................................................VIII
第一章 導論.................................................................................................................... 1
1.1 前言.............................................................................................................1
1.2 研究動機.....................................................................................................2
1.3 論文架構.....................................................................................................6
第二章 理論介紹與實驗方法.........................................................................................7
2.1 金屬-氧化物-半導體元件電容之物理特性.........................................7
2.1.1 量測模型.............................................................................................7
2.1.2 累積區(Accumulationregion)..............................................................9
2.1.3 空乏區(Depletion region)..................................................................11
2.1.4 反轉區(Inversion region)..................................................................12
2.1.5 平帶情況...........................................................................................15
2.2 氧化層之缺陷電荷...................................................................................16
2.2.1 介面缺陷電荷(Interface trap charge, QIT).......................................16
2.2.2 固定氧化層電荷(Fixed Oxide charge, QF) .....................................17
2.2.3 氧化層缺陷電荷(Oxide trap charge, QOT) .....................................17
2.2.4 移動離子電荷(Mobile ion charge, QM) ..........................................17
2.3 介面缺陷密度分析...................................................................................18
2.4 原子層沉積系統(Atomic Layer Deposition, ALD)..................................20
2.5 X 射線光電子能譜理論..........................................................................22
2.6 Sentaurus TCAD模擬..............................................................................22
第三章 氧化鋁/砷化銦金氧半電容元件製作與分析..................................................23
3.1 試片製備與量測系統簡介.......................................................................23
3.2 三甲基鋁前置處理與氨水化學處理.......................................................25
3.3 氨水化學處理、硝酸後氧化處理與沉積後退火處理............................31
3.4 金屬後退火處理(Post Metal Annealing, PMA).......................................38
3.5 累積區之頻散分析...................................................................................46
3.6 氧化鋁/砷化銦金氧半電容元件之介面特性分析..................................54
3.7 漏電流特性分析.......................................................................................56
第四章 結論...................................................................................................................59
參考文獻.........................................................................................................................60

[1] Heike Riel, Lars-Erik Wernersson, Minghwei Hong, and Jesus A. del Alamo, “III-V compound semiconductor transistors-from planar to nanowire structures,” MRS BULLETIN, p.668-p.677, 2014.
[2] Peide D. Ye, “Main determinants for III-V metal-oxide-semiconductor field-effect transistors,” J. Vac. Sci. Technol. A 26, p.697-p.704, 2008.
[3] Yee-Chia Yeo, Tsu-Jae King, and Chenming Hu, “MOSFET Gate Leakage Modeling and Selection Guide for Alternative Gate Dielectric Based on Leakage Considerations,” IEEE TRANSCATIONS ON ELECTRON DEVICES, VOL. 50, NO. 4, p.1027-p.1035, 2003.
[4] Mike Mayberry, “Enabling Breakthroughs In Technology,” p.15, 2011, http://download.intel.com/newsroom/kits/research/2011/pdfs/Components-Research_Enabling_Breakthroughs_Technology.pdf
[5] Roman Engel-Herbert, Yoontae Hwang, and Susanne Stemmer, “Comparsion of methods to quantify interface trap densities at dielectric/III-V semiconductor interfaces, ” JOUNAL OF APPLIED PHYSICS 108, 124101, 2010.
[6] A. Dimoulas,a P. Tsipas, and A. Sotiropoulos, “Fermi-level pinning and charge neutrality level in germanium,” APPLIED PHYSICS LETTERS 89, 252110, 2006.
[7] Jesus A. del Alamo, “Nanometre-scale electronics with III-V compound semiconductors,” Nature 479, p.317-p.323, 2011.
[8] Hai-Dang Trinh, Edward Yi Chang, Yuen-Yee Wong, Chih-Chieh Yu, Chia-Yuan Chang, Yueh-Chin Lin, Hong-Quan Nguyen, and Binh-Tinh Tran, “Effects of Wet Chemical and Trimethyl Aluminum Treatments on the Interface Properties in Atomic Layer Deposition of Al2O3 on InAs,” Japanese Journal of Applied Physics 49, 111201, 2010.
[9] Hau-Yu Lin, San-Lein Wu, Chao-Ching Cheng, Chih-Hsin Ko, et al, “Influences of surface reconstruction on the atomic-layer-deposited HfO2/ Al2O3/n-InAs metal-oxide-semiconductor capacitors,” APPLIED PHYSICS LETTERS 98, 123509, 2011.
[10] C. H. Wang, S. W. Wang, G. Doornbos, G. Astromskas, et al, “InAs hole inversion and bandgap interface state density of "2×" 〖"10" 〗^"11" " " 〖"cm" 〗^"-2" 〖"eV" 〗^"-1" at HfO2/InAs interfaces,” APPLIED PHYSICS LETTERS 103, 143510, 2013.
[11] Hai-Dang Trinh, Yueh-Chin Lin, Huan-Chung Wang, Chia-Hua Chang, et al, “Effect of Postdeposition Annealing Temperatures on Electrical Characteristics
of Molecular-Beam-Deposited HfO2 on n-InAs/InGaAs
Metal–Oxide–Semiconductor Capacitors,” Applied Physics Express 5, 021104, 2012.
[12] Jenny Hu and H. S. Philip Wong,“ Effect of annealing ambient and temperature on the electrical characteristics of atomic layer deposition Al2O3/In0.53Ga0.47As metal-oxide-semiconductor capacitors and MOSFETs, ” JOUNAL OF APPLIED PHYSICS 111, 044105, 2012.
[13] H.D. Trinh, G. Barmmertz, E. Y. Chang, C. I. Kuo, et al, “Electrical Characterization of Al2O3/n-InAs Metal–Oxide–Semiconductor Capacitors With Various Surface Treatments, ” IEEE ELECTRON DEVICE LETTERS, VOL. 32, NO. 6, p.752-p.754, 2011.
[14] Daniel M. Fleetwood, ““Border Traps” in MOS Devices, ” IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 39, NO. 2, p.269-p.270, 1992.
[15] R J SINGH and R S SRIVASTAVA, “Distribution of surface states based on Hill and Coleman conductance technique, ” Pramana, Vol. 18, No. 2, p.137-p.143, 1982.
[16] E. H. Nicollain, A. Goetzberger, “The Si-SiO2 Interface — Electrical Properties as Determined by the Metal-Insulator-Silicon Conductance Technique, ” Bell System Technical Journal, Volume 46, Issue 6, p.1055-p.1133, 1967.
[17] T. Suntola, “Atomic Layer Epitaxy,” Materials Science Reports, vol. 4, 1989.
[18] “Peak Fitting in XPS”, http://www.casaxps.com/help_manual/manual_updates/peak_fitting_in_xps.pdf, Casa Software Ltd, 2006.
[19] D.A. Shirley, “High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold,” PHYSICAL REVIEW B, Vol.5, No. 12, p.4709-p.4714, 1972.
[20] Laura B. Ruppalt, Erin R. Cleveland, James G. Champlain, Sharka M. Prokes,
J. Brad Boos, Doewon Park, and Brian R. Bennett, “Atomic layer deposition of Al2O3 on GaSb using in situ hydrogen plasma exposure,” APPLIED PHYSICS LETTERS 101, 231601, 2012.
[21] Chien-Chih Lin and Jenn-Gwo Hwu, “Performance enhancement of metal-oxide-semiconductor tunneling temperature sensors with nanoscale oxides by employing ultrathin Al2O3 high-k dielectrics,” Nanoscale, Vol.5, p.8090-p.8097, 2013.
[22] Vladimir Djara, Karim Cherkaoui, Michael Schmidt, Scott Monaghan, Éamon O’Connor, Ian M. Povey, Dan O’Connell, Martyn E. Pemble, and Paul K. Hurley “Impact of Forming Gas Annealing on the Performance of Surface-Channel In0.53Ga0.47As MOSFETs With an ALD Al2O3 Gate Dielectric, ” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 59, NO. 4, p.1084-p.1090, 2012.
[23] Serge Oktyabrsky, et al, “Fundamental of III-V MOSFETS,” Springer, 2010.
[24] C. Berglund, et al, IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol.13, 701, 1966.
[25] Yu Yuan, Bo Yu, Jaesoo Ahn, Paul C. McIntyre, Peter M. Asbeck, Mark J. W. Rodwell, and Yuan Taur, “A Distributed Bulk-Oxide Trap Model for Al2O3 InGaAs MOS Devices,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 59, NO. 8, p.2100-p.2106, 2012.
[26] Yu Yuan, Lingquan Wang, Bo Yu, Byungha Shin, Jaesoo Ahn, Paul C. McIntyre,
Peter M. Asbeck, Mark J. W. Rodwell, and Yuan Taur, “A Distributed Model for Border Traps in Al2O3 − InGaAs MOS Devices,” IEEE ELECTRON DEVICE LETTERS, VOL. 32, NO. 4, p.485-p.487, 2011.
[27] D. M. Riffe, “Temperature dependence of silicon carrier effective masses with application to femtosecond reflectivity measurements,” J. Opt. Soc. Am. B, Vol. 19, No. 5, p.1092-p.1100, 2002.
[28] I. Vurgaftmana, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” JOURNAL OF APPLIED PHYSICS, Vol. 89, No. 11,p.5815-p.5872, 2001.
[29] C. Kittel, “Introduction to Solid State Physics”, 5th edition., Wiley, New York, 1976.
[30] Matthias Passlack, et al, “Interface State Analysis on Nonsilicon Semiconductors and The Role of Heterostructures,” 41st IEEE SISC, 2012.
[31] Ning Li,Eric S. Harmon, James Hyland, David B. Salzman, T. P. Ma, Yi Xuan, and P. D. Ye, “Properties of InAs metal-oxide-semiconductor structures with atomic-layerdeposited Al2O3 Dielectric,” APPLIED PHYSICS LETTERS 92, 143507, 2008.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李永熾(1991)。<消費社會與價值法則>。《當代》,第67期,頁24-41。
2. 許育典(2012)。〈打開新聞自由的潘朵拉盒子──釋字第六八九號〉,《月旦裁判時報》,13:5-15。
3. 劉靜怡(2005)。〈言論自由:第五講-言論自由、誹謗罪與名譽權之保障〉,《月旦法學教室》,37:36-46。
4. 朱元鴻(1991)。<消費―政治經濟學之外>。《當代》,第67期,頁12-23。
5. 許家馨(2011)。〈什麼樣的民主?什麼樣的新聞自由?——從民主理論視野分析美國新聞自由法制〉,《政大法學評論》,124:1-71。
6. 劉昌德(2007)。〈媒體倫理的政治經濟學:國家、資本與新聞專業規範的流變〉,《中華傳播學刊》,11:111-153。
7. 許家馨(2012)。〈言論自由與名譽權的探戈:我國名譽侵權法實務與理論之回顧與前瞻〉,《政大法學評論》,128:203-260。
8. 鄭麗玉(1998):如何改變學生的迷思概念。教師之友,39(5),28-26
9. 郭重吉(1992):從建構主義的觀點探討中小學數理教學的改進。科學發展月刊,27,133-158。
10. 黃德祥(1990)。國中與國小學生數學焦慮與數學態度之分析研究。輔導學報,13 期。
11. 許家馨(2008)。〈美國誹謗侵權法歸責體系初探─以歸責內涵及查證義務為中心〉,《月旦法學雜誌》,154:111-141。
12. 陳家彬(2007)。成就目標論─學習動機研究的新取向。國民教育48,99-105。
13. 許家馨(2006)。〈釋字第509號解釋應否適用於民事案件?-為最高法院新新聞案判決翻案〉,《月旦法學雜誌》,132:102-127。
14. 張靜儀(1995)。科學迷思概念的研究與概念改變教學。屏師科學教育,49-56
15. 法治斌 (2000)。〈保障言論自由的遲來正義-評司法院大法官釋字第509號〉,《月旦法學雜誌》,65:145-155。
 
無相關點閱論文