跳到主要內容

臺灣博碩士論文加值系統

(3.235.174.99) 您好!臺灣時間:2021/07/24 20:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃伯勛
研究生(外文):Po-Shun Huang
論文名稱:全積體化之高效率E類功率放大器及2.4GHz/5GHz 雙頻帶高效率功率放大器之研製
論文名稱(外文):Research of Fully Integrated High Efficiency Class-E Power Amplifier and 2.4GHz/5GHz Dual Band High Efficiency Power Amplifier
指導教授:黃天偉
口試委員:蔡政翰邱煥凱
口試日期:2015-07-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:98
中文關鍵詞:E類功率放大器高效率變壓器結合雙頻帶
外文關鍵詞:Class-E power amplifierhigh efficiencytransformer combinedual band
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著無線通訊技術的快速發展、半導體製程技術的演進及積體電路的需求,用互補式金氧半場效電晶體實現的射頻電路逐漸成為市場上發展的新趨勢,在發射機系統當中主要的功率消耗來自於功率放大器,因此功率放大器在之中佔有舉足輕重的地位。因應現在行動裝置的普及化,高效率儼然成為功率放大器最重要的發展指標,因此本論文將著重在用互補式金氧半場效電晶體實踐高效率的功率放大器與分析。
在第二章中討論了E類功率放大器的操作原理及探討實際應用在製程當中會遇到的非理想效應,包含電晶體當中的寄生電阻、寄生電容等對E類功率放大器的影響,最後,在180奈米互補式金氧半場效電晶體製程實作一個5.3GHz的E類功率放大器,量測結果可以量到40%以上的PAE。在第三章中,考量到一般E類放大器在互補式金氧半場效電晶體會有過大的寄生電容導致E類功率放大器的效率降低且輸出功率都不足,因此用變壓器去達到功率結合及單端與差動訊號的轉換,這樣可以在高輸出功率時依舊擁有良好的轉換效率,最終的量測結果不僅能達到25dBm以上的輸出功率,PAE的量測結果也達到32%。在第四章中因應現在無線通訊的快速發展,能夠應用在雙頻帶的功率放大器的需求急遽增加,因此輸出端應用可變電容去切換讓電路在雙頻帶皆能達到最好的輸出功率及功率轉換效益,輸入端則同時匹配到50歐姆阻抗達到縮小面積的目標,在雙頻帶的量測結果PAE皆有30%以上的水準。


With the rapid growth of semiconductor process, demand of integrated circuit and development of wireless communication systems, implementing RF integrated circuit with CMOS process become a new development trend for the industry market. In the transceiver design, most of power consumption is come from power amplifier, thus power amplifier is a key component for RF circuit design. Because of widespread of mobile devices, high efficiency becomes a focus point for power amplifier design. As mentioned above, the design and analysis of high efficiency CMOS power amplifier is the topic of this thesis.
In chapter 2, the operation principles of class-E power amplifier is introduced and also discuss non-ideal effect on CMOS process, including parasitic resistance and capacitance of transistor. In the end of this chapter, a 5.3 GHz WLAN application single ended class-E power amplifier is presented, from the measurement result the circuit can achieve over 40% PAE and has output power of 21dBm.
In chapter 3, because of parasitic capacitance of CMOS transistor, we choose smaller device size to reduce parasitic capacitance and use transformer combine technique to obtain high output power also maintain high efficiency of class-E operation. The measurement result we achieve over 25dBm output power and PAE of 32%.
In chapter 4, due to the rapid expansion of wireless communication, demand of dual band power amplifier growth rapidly. For class-E design, shunt capacitance is a critical design parameter. Thus we use varactor to adjust shunt capacitance and make the circuit has best power performance at two design frequencies. From measurement result, we can achieve over 30% PAE for dual band applications.


Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 2
Chapter 2 A 5.3 GHz Fully Integrated Class-E Power Amplifier 3
2.1 Introduction 3
2.2 Ideal Class-E Power Amplifier Operation 4
2.3 Analysis on Non-Ideal Class-E Power Amplifier 17
2.3.1 Finite Switching Time 18
2.3.2 Finite “ON” and “OFF” Resistance 19
2.3.3 Nonlinear Parasitic Capacitance 20
2.3.4 Power Loss of Common Source Class-E Power Amplifier 21
2.3.5 Power Loss of Cascode Class-E Power Amplifier 22
2.4 Circuit Design 23
2.4.1 Bias and Device Selection 24
2.4.2 Design Flow 27
2.4.3 Input and Output Matching Network 29
2.4.4 5.3 GHz Class-E Power Amplifier 32
2.5 Simulation Result 34
2.5.1 Small-signal Simulation 34
2.5.2 Large-signal Simulation 35
2.5.3 Transient Simulation 36
2.6 Experimental Result 38
Chapter 3 5.3GHz Class-E Power Amplifier with Transformer Combine 42
3.1 Introduction 42
3.2 Circuit Design 44
3.2.1 Output Transformer Design 48
3.2.2 Input Transformer Design 51
3.2.3 Transformer Combine Class-E Power Amplifier 53
3.3 Simulation Result 56
3.3.1 Small-signal simulation 56
3.3.2 Large-signal simulation 57
3.3.3 Transient Simulation 58
3.4 Experimental Result 60
Chapter 4 2.4GHz / 5GHz Fully Integrated Dual-Band Class-E Power Amplifier 64
4.1 Introduction 64
4.2 Circuit Design 65
4.2.1 Output Matching Network Design 65
4.2.2 Input Matching Network Design 70
4.2.3 Dual Band Class-E Power Amplifier 75
4.3 Simulation Result 77
4.3.1 Small-signal Simulation 77
4.3.2 Large-signal Simulation 79
4.3.3 Transient Simulation 81
4.4 Experimental Result 83
Chapter 5 Conclusions 92
REFERENCE 93


[1] N. O. Sokal and A. D. Sokal, “Class E—A new class of high-efficiency tuned
single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol.
SC-10, no. 6, pp. 168–176, Jun. 1975.
[2] Andrei Grebennikov and Nathan O. Sokal “Switch-mode RF Power amplifier”
[3] M. Acar, A. J. Annema, and B. Nauta, “Analytical design equations for Class-E
power amplifiers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 12, pp.
2706–2717, Dec. 2007
[4] C. P. Avratoglou, N. C. Voulgaris, and F. I. Ioannidou, “Analysis and design of a
generalized Class E tuned power amplifier,” IEEE Trans. Circuits Syst., vol.
CAS-36, no. 8, pp. 1068–1079, Aug. 1989.
[5] F. H. Raab and N. O. Sokal, “Transistor power losses in the Class E tuned power
amplifier,” IEEE J. Solid-State Circuits, vol. SC-13, no. 6, pp. 912–914, Dec.
1978.
[6] A. Mazzanti, L. Larcher, R. Brama, and F. Svelto, “Analysis of reliability and
power efficiency in cascode Class-E PAs,” IEEE J. Solid-State Circuits, vol. 41,
no. 5, pp. 1222–1229, May 2006.
[7] D. J. Kessler and M. K. Kazimierczuk, “Power losses and efficiency of class E
power amplifiers at any duty ratio,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 51, no. 9, pp. 1675–1689, Sep. 2004.
[8] F. H. Raab and N. O. Sokal, “Transistor power losses in the class E tuned power
amplifier,” IEEE Journal of Solid-State Circuits, vol. SC-13, NO. 6, pp. 912–914,
Dec. 1999.
[9] M. Kazimierczuk, “Effects of the collector current fall time on the class E tuned
94
power amplifier,” IEEE Journal of Solid-State Circuits, vol.SC-18, no. 2, pp.
181–193, Apr. 1983.
[10] C. P. Avratoglou, N. C. Voulgaris, and F. I. Ionannidou, “Analysis and design of
a generalized class E tuner power amplifier,” IEEE Transactions on Circuits and
Systems, vol. 36, NO. 8, pp. 1068–1079, Apr. 1989.
[11] P. Alinikula, K. Choi, and S. I. Long, “Design of class E power amplifier with
nonlinear parasitic output capacitance,” IEEE Transactions on Circuits and
Systems, vol. 46, no. 2, pp. 114–119, Feb. 1990
[12] D. K. Choi and S. I. Long, “The effect of transistor feedback capacitance in
class–E power amplifiers,” IEEE Transactions on Circuits and Systems-I:
Fundamental Theory and Applications, vol. 50, no. 12, pp. 1556–1559, Dec.
2003
[13] D. K. Choi and S. I. Long, “A physically based analytic model of FET class E
power amplifiers-designing for maximum PAE,” IEEE Trans. Microw. Theory
Tech., vol. 47, no. 9, pp. 1712–1720, Sep. 1999.
[14] M. J. Chudobiak, “The use of parasitic nonlinear capacitors in class E amplifiers,”
IEEE Transactions on Circuits and Systems, vol. 41, no.12, pp. 941–944, Apr.
1994
[15] To-Po Wang and Ji-Hong Ke and Cheng-Yu Chiang, “A high-Psat high-PAE
fully-integrated 5.8-GHz power amplifier in 0.18-um CMOS,” in 2011 EDSSC,
Nov. 2011.
[16] Lin, G.C. and Lin, Z.M., “A 5.8 GHz Fully-Integrated Power Amplifier for
802.11a WLAN System,” in 2007 IEEE EDSSCC, Dec. 2007.
[17] Yuki Yamashita, Daisuke Kanemoto, Haruichi Kanaya, Ramesh K. Pokharel and
Keiji Yoshida ” A CMOS Class-E Power Amplifier of 40-% PAE at 5 GHz for
95
Constant Envelope Modulation System”, Silicon Monolithic Integrated Circuits
in RF Systems (SiRF), 2013 IEEE 13th Topical Meeting on
[18] Yuki Yamashita, Daisuke Kanemoto, Haruichi Kanaya, Ramesh K. Pokharel and
Keiji Yoshida“A 5-GHz Fully Integrated CMOS Class-E Power Amplifier Using
Biasing Technique with Cascaded Class-D Drivers”, Radio-Frequency
Integration Technology (RFIT), 2012 IEEE International Symposium on.
[19] C. Lu , A. V. H. Pham , M. Shaw and C. Saint "Linearization of CMOS
broadband power amplifiers through combined multigated transistors and
capacitance compensation", IEEE Trans. Microw. Theory Tech., vol. 55, no.
11, pp.2320 -2328, 2007.
[20] Hwann-Kaeo Chiou, Member, IEEE, Hua-Yen Chung, Student Member, IEEE,
Yuan-Chia Hsu, Da-Chiang Chang, Member, IEEE, and Ying-Zong Juang,
Member, IEEE , “Broadband and High-Efficiency Power Amplifier that
Integrates CMOS and IPD Technology”, IEEE TRANSACTIONS ON
COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY,
VOL. 3, NO. 9, SEPTEMBER 2013.
[21] Ockgoo Lee, Student Member, IEEE, Jeonghu Han, Member, IEEE, Kyu Hwan
An, Student Member, IEEE, Dong Ho Lee, Member, IEEE, Kun-Seok Lee,
Student Member, IEEE, Songcheol Hong, Member, IEEE, and Chang-Ho Lee,
Senior Member, IEEE , “A Charging Acceleration Technique for Highly
Efficient Cascode Class-E CMOS Power Amplifiers”, IEEE JOURNAL OF
SOLID-STATE CIRCUITS, VOL. 45, NO. 10, OCTOBER 2010.
[22] Jian Chen, Ritesh Bhat, and Harish Krishnaswamy, “A Compact Fully Integrated
High-Efficiency 5GHz Stacked Class-E PA in 65nm CMOS based on
Transformer-based Charging Acceleration”, Compound Semiconductor
96
Integrated Circuit Symposium (CSICS), 2012 IEEE.
[23] P. Haldi , D. Chowdhury , P. Reynaert , G. Liu and A. M. Niknejad “A 5.8 GHz 1
V linear power amplifier using a novel on-chip transformer power combiner in
standard 90 nm CMOS”, IEEE J. Solid-State Circuits, vol.43,no.5,pp.1054-1063,
May 2008.
[24] H. Solar , R. Berenguer , I. Adin , U. Alvarado and I. Cendoya "A fully
integrated 26.5 dBm CMOS power amplifier for IEEE 802.11a WLAN
standard with on-chip "power inductors"", IEEE MTT-S Int. Microwave Symp.
Dig., pp.1875 -1878, 2006.
[25] To-Po Wang and Ji-Hong Ke and Cheng-Yu Chiang, “A high-Psat high-PAE
fully-integrated 5.8-GHz power amplifier in 0.18-um CMOS,” in 2011 EDSSC,
Nov. 2011.
[26] C. Lu , A. V. H. Pham , M. Shaw and C. Saint "Linearization of CMOS
broadband power amplifiers through combined multigated transistors and
capacitance compensation", IEEE Trans. Microw. Theory Tech., vol. 55, no.
11, pp.2320 -2328, 2007.
[27] Cuong Huynh, Member, IEEE, and Cam Nguyen, Fellow, IEEE , “New
Technique for Synthesizing Concurrent Dual-Band Impedance-Matching
Filtering Networks and 0.18- m SiGe BiCMOS 25.37-GHz Concurrent
Dual-Band Power Amplifier” IEEE TRANSACTIONS ON MICROWAVE
THEORY AND TECHNIQUES, VOL. 61, NO. 11, NOVEMBER 2013
[28] Zhisheng Li, Guy Torfs, Johan Bauwelinck, Member, IEEE, Xin Yin, Member,
IEEE, Jan Vandewege, Member, IEEE, Christophe Van Praet, Peter Spiessens,
Member, IEEE, Huub Tubbax, and Frederic Stubbe, Member, IEEE, “A
2.45-GHz +20-dBm Fast Switching Class-E Power Amplifier With 43% PAE
97
and a 18-dB-Wide Power Range in 0.18-μm CMOS”, IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 59, NO. 4,
APRIL 2012.
[29] D. Sira, P. Thomsen, and T. Larsen, “Output power control in Class-E power
amplifiers”, IEEE Microw. Wireless Compon. Lett., vol. 20, no. 4, pp. 232–234,
Apr. 2010.
[30] Ville Saari, Pasi Juurakko, Jussi Ryynanen and Kari Halonen, “lntegrated 2.4
GHz Class-E CMOS Power Amplifier”, Radio Frequency integrated Circuits
(RFIC) Symposium, 2005. Digest of Papers. 2005 IEEE.
[31] Su Jie, et al, “A 2.4 GHz High Efficient Monolithic Class E Power Amplifier”,
Asia Pacific Conference on Postgraduate Research in Microelectronics and
Electronics (PrimeAsia), pp. 271 - 274, 22-24 Sept. 2010.
[32] P. Reynaert, “A 2.45-GHz 0.13-μm CMOS PA with parallel amplification,” IEEE
J. Solid-State Circuits, vol. 42, no. 3, pp. 551–562, Mar. 2007.
[33] Seung Hun Ji, Gyu Seok Hwang, Choon Sik Cho, Jae W. Lee and Jaeheung Kim
“836 MHz/1.95GHz Dual-Band Class-E Power Amplifier Using Composite
Right/Left-Handed Transmission Lines”, Microwave Conference, 2006. 36th
European.
[34] Hyun Jin Yoo, Kang Hyuk Lee, Hyuk Jun Oh, and Yun Seong Eo “A Fully
Integrated 2.4/3.4 GHz Dual-Band CMOS Power Amplifier with Variable
Inductor”, Microwave Integrated Circuits Conference, 2009. EuMIC 2009.
European.
[35] Mohammad Reza Ghajar, Slim Boumaiza “Concurrent Dual Band 2.4/3.5GHz
Fully Integrated Power Amplifier in 0.13μm CMOS Technology”, Microwave
Integrated Circuits Conference, 2009. EuMIC 2009. European.
98
[36] Ki Young Kim, Student Member, IEEE, Woo Young Kim, Student Member, IEEE,
Hyuk Su Son, Student Member, IEEE, Inn Yeal Oh, Member, IEEE, and Chul
Soon Park, Senior Member, IEEE ”A Reconfigurable Quad-Band CMOS Class E
Power Amplifier for Mobile and Wireless Applications”, IEEE MICROWAVE
AND WIRELESS COMPONENTS LETTERS, VOL. 21, NO. 7, JULY 2011.
[37] D. K. Choi and S. I. Long, “A physically based analytic model of FET class-E
power amplifiers—designing for maximum PAE,” IEEE Trans. Microw. Theory
Tech., vol. 47, no. 9, pp. 1712–1720, Sep. 1999.
[38] P. Reynaert and M. S. J. Seyaert, “A 1.75-GHz polar modulated CMOS RF
power amplifier for GSM-EDGE,” IEEE J. Solid-State Circuits, vol.40, no. 3, pp.
2598–2608, Mar. 2005.
[39] 曾奕恩,應用於無線通訊之瓦等級變壓器功率結合式 CMOS 功率放大器之
研製,國立台灣大學電信工程所碩士論文,2014 年 7 月
[40] H. Zhang, H. Gao, and G. P. Li, “Broad-band power amplifier with a novel
tunable output matching network,” IEEE Trans. Microw. Theory Techn., vol. 53,
no. 11, pp. 3606–3614, Nov. 2005.
[41] L. Yumin, D. Peroulis, S. Mohammadi, and L. P.B.Katehi, “A MEMS
reconfigurable matching network for a class AB amplifier,” IEEE Microw.
Wireless Compon. Lett., vol. 13, no. 10, pp. 437–439, Oct. 2003.
[42] W. C. E. Neo, Y. Lin, X. D. Liu, L. C. N. D. Vreede, L. E. Larson,M. Spirito, M.
J. Pelk, K. Buisman, A. Akhnoukh, A. D. Graauw, and L. K. Nanver, “Adaptive
multi-band multi-mode power amplifier using integrated varactor-based tunable
matching networks,” IEEE J. Solid- State Circuits, vol. 41, no. 9, pp. 2166–2176,
Sep. 2006.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文