# 臺灣博碩士論文加值系統

(3.95.131.146) 您好！臺灣時間：2021/07/25 15:03

:::

### 詳目顯示

:

• 被引用:0
• 點閱:110
• 評分:
• 下載:0
• 書目收藏:0
 本論文提出以多個單埠之散射參數量測，據以重建多埠被動及主動電路之散射矩陣。降埠法係使用埠數少於n 埠之網路分析儀，以獲得一n 埠電路之散射矩陣，已知適用降埠法之網路分析儀埠數，最少為雙埠或三埠，本論文則將埠數進一步降至單埠，即最低埠數。 第二章闡述對一雙埠電路，如何使用輔助電路及單埠終端器，由多個單埠散射參數，重建該雙埠電路之散射矩陣。其重建結果進一步應用於降埠法，由多個單埠散射參數量測值，重建n 埠電路之散射矩陣。由於使用單埠終端器，對於主動電路可能造成振盪，因此本章亦敘述雙埠主動電路之散射矩陣重建方法。最後，對於多埠互易電路，則提出可不使用降埠法，重建其n 埠散射矩陣。 由於輔助電路在降低量測埠數至單埠極為重要，第三章則討論輔助電路之影響，藉由適當選擇輔助電路，可降低單埠量測實驗數目，減低重建時數值運算之困難，以及增加重建結果之準確性。 第四章則敘述四個實驗實例。包含三埠被動互易電路，三埠被動非互易電路以及雙埠主動電路。重建結果與直接散射矩陣量測結果比較，顯示其一致性，重建誤差亦予以討論。
 In this dissertation, study results to reconstruct the scattering matrix (S-matrix) of a multiport network from a set of one-port scattering parameter (S-parameter) measurements are presented. Port reduction method (PRM) is a method to acquire the S-matrix of an n-port network by using a reduced port vector network analyzer (VNA).PRMs have shown that the minimum number of port of a VNA is two or three. This study attempts to go one step further to reduce the number of port to be one, which isthe lowest number. In Chapter 2, reconstruction method using auxiliary circuits and one-port terminations to solve the S-matrix of a two-port network is described. The type-II PRM is then applied to the results for the reconstruction of the S-matrix of an n-port network. Since the terminations used in one-port measurement may cause an active networkoscillation. Further development on reconstructing a two-port active network is given. Finally, the method in reconstructing the S-matrix of a multiport reciprocal network without using PRM is also presented. The use of auxiliary circuits plays an important role in reducing the number of measured port to be one. The effects of the auxiliary circuits are discussed in Chapter 3. By properly selecting the auxiliary circuit, one can reduce the number of one-port measurements, ease the problem encountered in the reconstruction, and increase the accuracy of the reconstructed results. Chapter 4 presents four experimental examples to verify the developed reconstruction methods. They include a three-port reciprocal network, a passive nonreciprocal network and a two-port active network. The reconstructed results are compared with the directly measured S-matrices. They are shown in good agreement. Errors of reconstructed results are also discussed.
 摘要 .................................................. iAbstract ............................................. iiContents ............................................. ivChapter 1 Introduction ................................ 11.1 Multiport network S-matrix measurement ............ 11.2 Reconstruction methods ............................ 21.3 Port reduction methods ............................ 21.4 Motivation and contribution........................ 31.5 Chapter outline ................................... 5Chapter 2 Formulation ................................ 102.1 Two-port network ................................. 102.1.1 Diagonal elements............................... 102.1.2 Off-diagonal elements........................... 122.2 Two-port active network .......................... 142.3 Reciprocal network using comparison process ...... 162.3.1 Formulation .................................... 172.3.2 Three-port case ................................ 182.4 Summary .......................................... 22Chapter 3 Selection of auxiliary circuit ............. 263.1 Two-port network ................................. 263.2 Two-port active network .......................... 283.3 Two-port reciprocal network ...................... 293.4 Summary .......................................... 31Chapter 4 Experimental results ....................... 334.1 Three-port reciprocal network .................... 334.2 Three-port nonreciprocal network ................. 384.3 Two-port active network .......................... 394.4 Three-port reciprocal network using comparison process .............................................. 414.5 Summary .......................................... 42Chapter 5 Conclusion ................................. 71Appendices ........................................... 73
 [1] M. Davidovitz, “Reconstruction of the S-matrix for a 3-port using measurements at only two ports,” IEEE Microwave Guided Wave Lett., vol. 5, no. 10, pp. 349-350, Oct. 1995.[2] J. C. Tipper and R. A. Speciale, “A rigorous technique for measuring the scattering matrix of a multi-port device with a two-port network analyzer,” IEEE Trans. Microwave Theory Techn., vol. MTT-30, no. 5, pp.661-666, May 1982.[3] J. C. Rautio, “Techniques for correcting scattering parameter data of an imperfectly terminated multiport when measured with a two-port network analyzer,” IEEE Trans. Microwave Theory Techn., vol. MTT-31, no. 5,pp.407-412, May 1983.[4] I. Rolfes and B. Schiek, “Multiport method for the measurement of the scattering parameters of n-ports,” IEEE Trans. Microwave Theory Techn., vol. 53, no. 6,pp.1990-1996, Jun. 2005.[5] S. Sercu and L. Martens, “Characterizing n-port packages and interconnections with a 2-port network analyzer,” in IEEE 6th Topical Meeting on ElectricalPerformance of Electronic Packaging, pp. 163-166, Oct. 1997.[6] D. F. Williams and D. K. Walker, “In-line multiport calibration algorithm,” in 51st ARFTG Conf. Dig., pp. 88-90, June 1998.[7] W. Lin and C. Ruan, “Measurement and calibration of a universal six-port network analyzer,” IEEE Trans. Microwave Theory Techn., vol. 37, no. 4, pp. 734-742, Apr. 1989.[8] H. C. Lu and T. H. Chu, “Port reduction methods for scattering matrix measurement of an n-port network,” IEEE Trans. Microwave Theory Techn., vol. 48, no. 6, pp. 959-968, June 2000.[9] H. C. Lu and T. H. Chu, “Multiport scattering matrix measurement using a reduced-port network analyzer,” IEEE Trans. Microwave Theory Techn., vol. 51, no. 5, pp. 1525-1533, May 2003.[10] J. Martens, D. Judge, and J. Bigelow, “Multiport vector network analyzer measurements,” IEEE Microwave Magazine, vol. 6, no. 4, pp. 72-81, Dec. 2005.[11] T. G. Ruttan, B. Grossman, A. Ferrero, V. Teppati, and J. Martens, “Multiport VNA measurements,” IEEE Microwave Magazine, vol. 9, no. 3, pp. 56-69, June2008.[12] A Ferrero, V. Teppati, E. Fledell, B. Grossman, and T. Ruttan, “Microwave multiport measurements for the digital world,” IEEE Microwave Magazine, vol.12, no. 1, pp. 61-73, Feb. 2011.[13] P.C. Sharma and K.C. Gupta, "A generalized method for de-embedding ofmultiport networks," IEEE Trans. Instrum. Meas., vol. IM-30, pp.305-307, Dec. 1981.[14] A.Ferrero and F. Sanpiertro, “A simplified algorithm for leaky network analyzer calibration,” IEEE. Microeave Guided Wave Lett., vol. 5, pp.119-121, Apr. 1995.[15] C. J. Chen and T. H. Chu, “Accuracy criterion for S-matrix reconstruction transforms on multiport networks,” IEEE Trans. Microwave Theory Tech., vol. 59,no. 9, pp. 2331-2339, Sep. 2011.[16] C. J. Chen and T. H. Chu, "Virtual auxiliary termination for multiport scattering matrix measurement using two-port network analyzer," IEEE Trans. MicrowaveTheory Tech., vol. 55, no. 8, pp. 1801-1810, Sep. 2007.[17] G. F. Engen, “The six-port reflectometer: an alternative network analyzer,” IEEE Trans. Microwave Theory Techn., vol. MTT-25, no. 12, pp. 1075-1080, Dec.1977.[18] Y. C. Lin and T. H. Chu, “Determining scattering matrix of a three-port reciprocal network from one-port measurements,” in Asia Pacific Microwave ConferenceDigest, pp. 432-434, Nov. 2014.[19] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, pp. 17, New York: Dover, 1972.
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 無相關論文

 1 [1] 柯承恩，2000，我國公司監理體系之問題與改進建議（上），會計研究月刊，第173期，頁次75-81。 2 [2] 柯承恩，2000，我國公司監理體系之問題與改進建議（下」，會計研究月刊，第174期，頁次79-83。 3 [4] 葉銀華、李存修，2003年，台灣之獨立董監制度的改革-政策性建議，會計研究月刊，第213期。

 無相關點閱論文

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室