跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/29 14:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林昱宏
研究生(外文):Yu-Hung Lin
論文名稱:應用於極化分集之61-GHz雙饋入圓極化超大型微帶天線
論文名稱(外文):61-GHz Dual-Feed Circularly Polarized Oversize Patch Antenna for Polarization Diversity Applications
指導教授:許博文許博文引用關係
指導教授(外文):Powen Hsu
口試委員:張知難陳士元馬自莊
口試委員(外文):Shih-Yuan ChenTzyh-Ghuang Ma
口試日期:2015-06-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:73
中文關鍵詞:圓極化高階模態微帶天線極化分集
外文關鍵詞:Circular polarizationshigher-order modespatch antennaspolarization diversity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一種以微帶線饋入之雙圓極化之超大型微帶天線,主要操作在61 GHz ISM頻帶。「超大型」之概念乃是有別於傳統操作在基頻的天線,由於操作在共振頻率較高的高階模態,天線的尺寸因此被等比例放大。因為毫米波頻段的特性,設計於61 GHz的傳統微帶天線大小與饋入傳輸線尺寸相當,造成阻抗匹配上的困難。本論文因而提出此大型微帶天線的設計,可有效解決此問題,不須要另外設計複雜的阻抗匹配電路。除此之外,由於天線尺寸相較於操作於基頻的天線較大,在61 GHz因製成技術的良率及製作誤差的容忍度可得到提升。
論文中的天線以截角方式實現圓極化,利用兩個正交微帶線饋入,使其擁有兩相互正交的極化方向,有效應用於極化分集。由於天線的面積較大,因此不須要使用天線陣列形式,其天線增益即可大於傳統微帶天線。此外,本論文採用深入饋入方式,增加兩個輸入埠之間隔離度之頻寬。所提出的天線為簡單的單層架構。
藉由實作在RO4003板材上,以設計於5.8 GHz ISM頻帶來進行實驗佐證,量測結果與模擬結果相近,天線饋入埠隔離度可達15 dB。在論文最後,未來會以此架構進行61 GHz之實作並量測。


In this thesis, a dual-feed dual circularly polarized oversize antenna is proposed for 61 GHz ISM band application. The term “oversize” means that comparing to conventional patch antenna operated at the fundamental mode, the proposed antenna is enlarged due to implemented at the higher-order mode. In millimeter-wave band, the dimension of the antenna is close to that of the microstrip feeding line which causes the feeding difficulties. This problem can be solved by the proposed antenna without any complicated matching networks. Moreover, since the dimension of the antenna is enlarged, the manufacturing tolerances can be increased.
The proposed circularly polarized rectangular patch antenna with is achieved by truncating its two corners. By exploiting two vertically placed microstrip feeding lines, the proposed antenna has orthogonal circular polarizations for polarization diversity applications. Owing to its enlarged size, the oversize antenna has higher gain than that of the conventional one without using array design. In addition, this design is fed by two inset microstrip lines that can enhance the isolation between the two ports. The proposed design has a simple and single-layer structure.
This design is fabricated on the RO4003 simulated and verified at the 5.8 GHz band. The simulated and measured results are in good agreement. Up to 15 dB isolation are achieved. The simulation of 61 GHz version is provided for future experimental verification.


誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey 2
1.3 Contributions 4
1.4 Chapter Outlines 5
Chapter 2 Operation Principles of Circularly Polarized Patch Antenna 6
2.1 Introduction 6
2.2 Basic Characteristics 6
2.3 Feeding Methods 7
2.4 Rectangular Microstrip Antenna 8
2.4.1 Transmission Line Model 9
2.4.2 Cavity Model 10
2.5 Circular Polarization 12
2.5.1 Double-Feed Circularly Polarized Rectangular Microstrip Antenna 13
2.5.2 Single-Feed Circularly Polarized Rectangular Microstrip Antenna 14
Chapter 3 Dual-Feed Oversize Patch Antenna with Dual Circularly Polarization at 5.8 GHz ISM band 22
3.1 Isolation Design 23
3.1.1 Concepts of Isolation for circularly polarized patch antenna 23
3.1.2 Design Procedure 24
3.2 An Dual-Feed Dual Circularly Polarized Oversize Patch Antenna with Quarter Wave Transformer 25
3.2.1 Antenna Design and Analysis 25
3.2.2 Simulation and Measurement Results 26
3.3 An Dual-Feed Dual Circularly Polarized Oversize Patch Antenna with Taper Line 27
3.3.1 Antenna Design and Analysis 27
3.3.2 Simulation and Measurement Results 28
3.4 Conclusion 29
Chapter 4 Dual-Feed Oversize Patch Antenna with Dual Circular Polarization at 61 GHz ISM band 55
4.1 Antenna Design 55
4.2 Simulation and Measurement Results 55
4.3 Conclusion 57
Chapter5 Conclusion and Future Works 67
5.1 Conclusion 67
5.2 Future Work 68
REFERENCE 69


[1] S. Gao, Q. Luo, and F. Zhu, Circularly polarized antennas, 1st ed., West Sussex: Wiley, 2014.
[2] S. Mann, G. Vinci, S. Lindner, S. Linz, F. Barbon, R. Weigel, and A. Koelpin, “61 GHz six-port radar frontend for high accuracy range detection applications,” in Proc. Antennas and Propag. in Wireless Commun., Sept. 2013, pp. 818-821.
[3] S. Scherr, S. Ayhan, H.Gulan, M. Pauli, and T. Zwick, “61 GHz ISM band FMCW radar for applications requiring high accuracy, ” in Proc. Asia-Pacific Microw. Conf., Sendai, Japan, Nov. 2014, pp. 1118-1120.
[4] A. Stelzer, C. Diskus, K. Lubke, and H. Thim, “A microwave position sensor with submillimeter accuracy, ” IEEE Transactions on Microwave Theory and Techniques, vol.47, no. 12, pp. 2612-2624, Dec.1999.
[5] M. PourMousavi, M. Wojnowski, S. Roehr, G. Sommer, R. Weigel, “The impact of shape and size of air cavity on extended hemispherical lens characterization for wireless applications at 61 GHz,” in Proc. European Antennas and Propag. Conf., Gothenburg, Sweden, April 2013, pp. 3295-3298.
[6] M. Umehira, T. Sasame, and H. Sawada, “An orthogonal polarization based MIMO transmission for advanced 60 GHz WLAN,” in Proc. IEEE Vehicular Technology Conf., Yokohama, Japan, May 2012, pp.1-5.
[7] H. K. Pan, “Dual-polarized Mm-wave phased array antenna for multi-Gb/s 60 GHz communication,” in Proc. IEEE AP-S Int. Symp.,Spokane, USA, July 2012, pp. 3279-3282.
[8] C. A. Balanis, Antenna Theory – Analysis and Design, 3rd ed., New York: Wiley, 2005.
[9] R. Bancroft, Microstrip and Printed Antenna Design, 2nd ed., SciTech Publishing, 2009.
[10] C. K. Yang, “A 60 GHz patch antenna with dual-feed for polarization diversity applications,” M.S. thesis, National Taiwan University, Taiwan, 2013.
[11] Y. J. Ren and K. Chang, “A new class of harmonic components for millimeter-wave applications,” Int. Journal of RF and Microwave Comp. Aid Eng., pp 63-67, 2008.
[12] E. Okon and C. Turner, “High order mode planar resonators for mm-wave applications” in Proc. IEEE Symp. High Perform Electron Devices Microwave Optoelectronic Applications, London, UK, Nov. 1999, pp. 307-311.
[13] D. Wang, H. Wong, K. B. Ng, and C. H. Chan, “Wideband shorted higher-order mode millimeter-wave patch antenna,” in Proc. Int. Symp. Antennas Propag., Chicago, USA, July 2012, pp. 1-2.
[14] Y. H. Kung, “60-GHz Dual-feed oversized patch antenna for polarization diversity applications,” M.S. thesis, National Taiwan University, Taiwan, 2014.
[15] B. Allen, R. Brito, M. Doher, and H. Aghvami, “Performance comparison of spatial diversity array topologies in an OFDM based wireless LAN,” IEEE Trans. Consumer Electronics, vol. 50, no. 2, pp. 420-428, May 2004.
[16] E. G. Larsson, “On the combination of spatial diversity and multiuser diversity,” IEEE Commun. Letter, vol. 8, no. 8, pp. 517-519, Aug. 2004.
[17] T. A. Tsifitsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Commun., vol. 8, no. 2, pp. 951-957, Feb. 2009.
[18] H. T. Chattha, Y. Huang, S. J. Boyes, and X. Zhu, “Polarization and pattern diversity-based dual-feed planar inverted-F Antenna,” IEEE Trans. Antennas Propag., vol. 60, no. 3, pp. 1532-1539, Mar. 2012.
[19] Y. Ding, Z. Du, K. Gong, and Z. Feng, “A novel dual-band printed diversity antenna for mobile terminals,” IEEE Trans. Antennas Propag., vol. 55, no. 7, pp. 2028-2096, Jul. 2007.
[20] M. Gallo, E. A D., M. F B., M. Bozzetti, J. M. M.-G-P., and L. J. –L., “A broadband pattern diversity annular slot antenna,” IEEE Trans. Antennas Propag., vol. 60, no. 3, pp.1593-1600, Mar. 2012.
[21] S. H. Chen, J.-S. Row, K. L. Wong, “Reconfigurable square-ring patch antenna with pattern diversity,” IEEE Trans. Antennas Propag., vol. 55, no. 2, pp.472-475, Feb. 2007.
[22] Y. Dong, and T. Itoh, “Planar ultra-wideband antennas in Ku- and K-band for pattern or polarization diversity applications,” IEEE Trans. Antennas Propag., vol. 60, no. 6, pp. 2886-2895, June 2012.
[23] L. J. Du Toit and J. H. Cloete, “Dual polarized linear microstrip patch array,” in Proc. IEEE AP-S Int. Symp., Blacksburg, USA, 1987, pp. 810-813.
[24] M. J. Cryan and P. S. Hall, “Integrated active antenna with simultaneous transmit-receive operation,” Electron. Lett, vol. 32, no. 4, pp. 286-287, Feb. 1996.
[25] S. S. Zhong, X. X. Yang, S. C. Gao, and J. H. Cui, “Corner-fed microstrip antenna element and arrays for dual polarization operation,” IEEE Trans. Antennas Propag., vol. 50, no. 10, pp. 1473-1480, Oct. 2002.
[26] K. S. Min, S. H. Park, D. C. Kim, and H. Arai, “Microstrip patch antenna with dual resonance and dual polarization,” in Proc, Asia Pacific Microwave Conf., 1999, vol. 1, pp. 158-161.
[27] H. Wong, K. L. Lau and K. M. Luk, “Design of dual-polarized L-probe patch antenna arrays with high isolation,” IEEE Tran. Antennas Propag., vol. 52,no. 1, pp. 45-52, Jan. 2004.
[28] A. Adrain and D. H. Schaubert, “Dual aperture-coupled microstrip antenna for dual or circular polarization,” Electron. Lett., vol. 23, pp. 1226-1228, 1987.
[29] S. Gao, L. W. Li, M. S. Leong, and T. S. Yeo, “A broad-band dual-polarized microstrip patch antenna with aperture coupling,” IEEE Tran. Antennas Propag., vol. 51, no. 4, April 2003.
[30] K. L. Wong, H. C. Tung, and T. W. Chiou, “Broadband dual-polarized aperture-coupled patch antennas with modified H-shaped coupling slots,” IEEE Tran. Antennas Propag., vol. 50, no. 2, Feb. 2002.
[31] T. W. Chiou and K. L. Wong, “Broad-band dual-polarized single microstrip patch antenna with high isolation and low cross polarization,” IEEE Tran. Antennas Propag., vol. 50, no. 3, Feb. 2002.
[32] D. G. Kurup, A. Rydberg, and M. Himid, “Compact microstrip-T coupled patch antenna for dual polarization and active antenna applications,” Electron. Lett., vo. 38, no. 21, pp.1240-1241, Oct. 2002.
[33] F. Ferrero, C. Luxey, R. Staraj, G. Jacquemod, M. Yedlin, and V. Fusco, “Theory and design of a tunable quasi-lumped quadrature coupler,” Microwave Opt. Technol. Lett., vol. 51, no. 5, pp. 2219-2222, Sep. 2009.
[34] F. Ferrero, C. Luxey, R. Staraj, G. Jacquemod, M. Yedlin, and V. Fusco, “A novel quad-polarization agile patch antenna” IEEE Trans. Antennas Propag., vol. 57, no. 5, pp. 1563-1567, May 2009.
[35] W. Zhu, S. Xiao, R. Yuan, and M. Tang, “Broadband and dual circularly polarized patch antenna with H-shaped aperture,” in Proc, Antennas and Propag. (ISAP), 2014 Int. Symp. on, Kaohsiung, Taiwan, Dec. 2014, vol. 1, pp. 167-168.
[36] Y. Ushijima, E. Nishyama, M. Aikawa, “Single-layer integrated microstrip array antenna for dual circular polarization,” IET Microw. Antennas Propag., vol. 6, no. 8, pp. 962-968, 2011.
[37] C. Zhang, X. Liang, X. Bai, J. Geng, and R. Jin, “A broadband dual circularly polarized patch antenna with wide beamwidth,” IEEE Antennas Propag. Lett., vol.13, pp. 1457-1460, 2014.
[38] G. L. Wu, W. Mu, G. Zhao, and Y. C. Jiao, “A novel design of dual circularly polarized antenna fed by L-strip,” Progress In Electromagnetics Research, vol. 79, pp. 39-46. 2008.
[39] A. Narbudowicz, X. Bao, and M. Ammann, “Dual circularly-polarized patch antenna using even and odd feed-line modes,” IEEE Trans. Antennas Propag., vol. 61, no. 9, pp. 4828-4831, Sep. 2013.
[40] F. Yang and Y. Rahmat-Samii, “A reconfigurable patch antenna using switchable slots for circular polarization diversity,” IEEE Microwave Wireless Compon. Lett., vol. 12, no. 3, pp. 96-98, Mar. 2002.
[41] T. Fukusako, N. Kitamura, and N. Mita, “Circularly polarized reconfigurable patch antenna using Y-branched feed circuit,” in Proc. IEEE AP-S Int. Symp., July 2005, pp. 597-600.
[42] S. Gao, Q. Luo, and F. Zhu, Circularly Polarized Antennas, 1st ed., New York: Wiley, 2014.
[43] J. S. Hong, Microstrip Filter for RF/Microwave Applications, 2nd ed., New York: Wiley.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top