跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/20 08:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭軒豪
研究生(外文):Shiuan-Hao Kuo
論文名稱:實體層猛禽碼之研究
論文名稱(外文):Some Designs of Physical-Layer Raptor Codes
指導教授:林茂昭
指導教授(外文):Mao-Chao Lin
口試委員:趙啟超鐘嘉德楊谷章蘇賜麟陸曉峰蘇育德邱茂清翁詠祿
口試委員(外文):Chi-chao ChaoChar-Dir ChungGuu-Chang YangSzu-Lin SuFrancis LuYu-Ted SuMao-Ching ChiuYeong-Luh Ueng
口試日期:2015-07-15
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:67
中文關鍵詞:無碼率編碼實體層猛禽碼原模圖外在資訊傳遞分析通道容量
外文關鍵詞:rateless codingphysical-layer Raptor codeprotographEXIT analysischannel capacity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
實體層猛禽碼為一種無碼率編碼,傳統上能針對單一訊雜比做最佳化。文獻已證實於二元輸入高斯雜訊通道中,可以適用所有訊雜比的通用猛禽碼並不存在,但達到準通用的猛禽碼設計應是可能的。本論文將針對非系統性碼與系統性碼,探討此種猛禽碼的可行性。論文主體分三部份。第一部份提出可適性非系統性猛禽碼的設計,使其可於一個廣泛的雜訊比範圍內逼近通道容量。此設計利用可適性度分布,於傳送中能逐次改變度分布。第二部份研究盧比變換-累加碼之設計。此編碼移除猛禽碼中做為外碼之低密度奇偶檢查碼,改採用累加器做為盧比變換碼之內碼。最後一部分提出一個根據原模圖的系統性猛禽碼設計。藉由原模圖外在資訊傳遞的分析,可以根據舊有原模圖盧比變換碼之檢查節點,找出最適合之新檢查節點。此方法能建構出在一個廣泛訊雜比範圍內逼近通道容量的系統性猛禽碼。

The phisical-layer Raptor (PLR) code is a class of rateless coding that can be constructed to achieve a rate close to the capacity of the binary-input AWGN (BIAWGN) channel with a fixed signal-to-noise ratio (SNR). It has been proved that there does not exist an universal PLR code that has capacity achieving ability for all channel conditions of BIAWGN channels. Nevertheless, PLR codes with quasi-universality that can be capacity-approaching in an SNR range is possible. In this dissertation, we study such PLR codes for both non-systematic and systematic case. In the first part, we propose a constructive approach of designing the non-systematic PLR code such that the achieved rates are close to the associated capacities for wide SNR ranges. The proposed adaptive PLR code employs an adaptive degree distribution that is constructed based on the concept of switching degree distributions during transmission. In the second part, we study the design of LT-accumulate code that concatenates an inner accumulator to the LT code instead of an outer low-density parity check (LDPC) code. In the last part, a construction of systematic PLR codes based on protographs is proposed. A modified protograph EXIT analysis is employed to find the extra check nodes in addition to the existing check nodes so as to meet the threshold required by the outer LDPC code. Systematic PLR codes which are capacity approaching for a wide SNR range can be obtained using the proposed algorithm.

口試委員審定書 ........................................ i
致謝.................................................. ii
中文摘要............................................. iii
Abstract.............................................. iv
Contents............................................... v
List of Figures...................................... vii
List of Tables......................................... x
1 Introduction......................................... 1
1.1 Literature Review . . . . . . . . . . . . . . . . . 1
1.2 Summary of Contributions . . . . . . . . . . . . . 4
2 Adaptive non-systematic PLR code..................... 5
2.1 Basics of physical-layer Raptor Codes . . . . . . . 5
2.1.1 Encoding and Decoding of PLR codes . . . . . . . 5
2.1.2 Code Construction . . . . . . . . . . . . . . . . 8
2.1.3 Conventionally Optimized non-systematic PLR codes 10
2.2 Proposed Raptor codes . . . . . . . . . . . . . . 13
2.2.1 Adaptive Degree Distributions . . . . . . . . . 13
2.2.2 Numerical Results . . . . . . . . . . . . . . . 15
2.3 Asymptotic Performances . . . . . . . . . . . . . 20
2.4 Sub-optimal decoding for Raptor codes . . . . . . 21
2.5 Concluding Remarks . . . . . . . . . . . . . . . . 23
3 LT-accumulate Code ................................. 26
3.1 Code Structure . . . . . . . . . . . . . . . . . . 26
3.2 EXIT analysis and code optimization . . . . . . . 29
3.3 Numerical Results . . . . . . . . . . . . . . . . 33
3.4 Concluding Remarks . . . . . . . . . . . . . . . . 34
4 Systematic PLR codes based on protographs .......... 36
4.1 Some Preliminaries . . . . . . . . . . . . . . . . 37
4.2 Protograph-based Raptor codes . . . . . . . . . . 40
4.3 Construction of Check-Regular PR Codes . . . . . . 42
4.4 Construction of Irregular PR Codes . . . . . . . . 45
4.5 Decoding Complexity . . . . . . . . . . . . . . . 51
4.6 Irregular PR codes for Gray-mapped 16QAM . . . . . 54
4.7 Concluding Remarks . . . . . . . . . . . . . . . . 58
5 Conclusions ....................................... 60
5.1 Future Direction . . . . . . . . . . . . . . . . . 61
Bibliography ......................................... 62

[1] M. Luby, “LT codes,” in Proc. 43rd Annual IEEE Symp. Found. of Computer Science, 2002, pp. 271–280.
[2] X. Yuan and L. Ping, “On systematic LT codes,” IEEE Commun. Lett., vol. 12, no. 9, pp. 681–683, Sep. 2008.
[3] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inform. Theory, vol. 52, no. 6, pp. 2551–2567, Jun. 2006.
[4] R. Palanki and J. S. Yedidia, “Rateless codes on noisy channels,” in Proc. IEEE Int. Symp. Inform. Theory(ISIT), Jun. 2004.
[5] O. Etesami and A. Shokrollahi, “Raptor codes on binary memoryless symmetric channels,” IEEE Trans. Inform. Theory, vol. 52, no. 5, pp. 2033–2051, May 2006.
[6] J. Castura and Y. Mao, “Rateless coding over fading channels,” IEEE Commun. Lett., vol. 10, no. 1, pp. 46–48, Jan. 2006.
[7] ——, “Rateless coding for wireless relay channels,” IEEE Trans. Commun., vol. 6, no. 5, pp. 1638–1642, May 2007.
[8] X. Liu and T. Lim, “Fountain codes over fading relay channels,” IEEE Trans. Wireless Commun., vol. 8, no. 6, pp. 3278–3287, Jun. 2009.
[9] E. Soijanin, N. Varnica, and P. Whiting, “Punctured vs rateless codes for hybrid ARQ,” in Proc. Inform. Theory Workshop (ITW), Punta del Este, Uruguay, Mar. 2006, pp. 155–159.
[10] D. Chase, “Code combining–a maximum-likelihood decoding approach for combining an arbitrary number of noisy packets,” IEEE Trans. Commun., vol. 33, no. 5, pp. 385–393, May 1985.
[11] D. Mandelbaum, “An adaptive-feedback coding scheme using incremental redundancy,” IEEE Trans. Inform. Theory, vol. 20, no. 3, pp. 388–389, May 1974.
[12] E. Visotsky, Y. Sun, V. Tripathi, M. L. Honig, and R. Peterson, “Reliability-based incremental redundancy with convolutional codes,” IEEE Trans. Commun., vol. 53, no. 6, pp. 987–997, Jun. 2005.
[13] D. N. Rowitch and L. B. Milstein, “On the performance of hybrid FEC/ARQ systems using rate compatible punctured turbo (RCPT) codes,” IEEE Trans. Commun., vol. 48, no. 6, pp. 948–959, Jun. 2000.
[14] M. El-Khamy, J. Hou, and N. Bhushan, “Design of rate-compatible structured LDPC codes for hybrid ARQ applications,” IEEE J. Select. Areas Commun., vol. 27, no. 6, pp. 965–973, Aug. 2009.
[15] J. Garcia-Frias and W. Zhong, “Approaching shannon performance by iterative decoding of linear codes with low-density generator matrix,” IEEE Commun. Lett., vol. 7, no. 6, pp. 266–268, Jun. 2003.
[16] M. Gonzalez-Lopez, F. Vazquez-Araujo, L. Castedo, and J. Garcia-Frias, “Serially-concatenated low-density generator matrix (SCLDGM) codes for transmission over AWGN and rayleigh fading channels,” IEEE Trans. Wireless Commun., vol. 6, no. 8, pp. 2753–2758, Aug. 2007.
[17] F. Vazquez-Araujo, M. Gonzalez-Lopez, L. Castedo, and J. Garcia-Frias, “Capacity approaching low-rate LDGM codes,” IEEE Trans. Commun., vol. 59, no. 2, pp. 352–356, Feb. 2011.
[18] H. Jin, A. Khandekar, and R. McEliece, “Irregular repeat-accumulate codes,” in Proc. 2nd Int. Symp. Turbo Codes and Related Topics, Sep. 2000, pp. 1–8.
[19] K. Wu, Z. Zhang, Y. Huo, and S. Yang, “Accumulate rateless coding for AWGN channel,” in Proc. 3rd Int. Conf. Commun. and Networking (ChinaCom), China, Aug. 2008, pp. 100–104.
[20] N. Bonello, R. Zhang, S. Chen, and L. Hanzo, “Reconfigurable rateless codes,” IEEE Trans. Wireless Commun., vol. 8, no. 11, pp. 5592–5600, Nov. 2009.
[21] Z. Cheng, J. Castura, and Y. Mao, “On the design of raptor codes for binary-input gaussian channels,” IEEE Trans. Commun., vol. 57, no. 11, pp. 3269–3277, Nov. 2009.
[22] D. Divsalar, S. Dolinar, C. R. Jones, and K. Andrews, “Capacity-approaching protograph codes,” IEEE J. Select. Areas Commun., vol. 27, no. 6, pp. 876–888, Aug. 2009.
[23] G. Liva and M. Chiani, “Protograph LDPC codes design based on EXIT analysis,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM), Washington, DC, Nov. 2007, pp. 3250–3254.
[24] T.-Y. Chen, K. Vakilinia, D. Divsalar, and R. D. Wesel, “Protograph-based raptor-like LDPC codes,” IEEE Trans. Commun., vol. 63, no. 5, pp. 1522–1532, May 2015.
[25] Y. Chen and K. K. Parhi, “Overlapped message passing for quasi-cyclic low-density parity check codes,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 6, pp. 1106–1113, Jun. 2004.
[26] Y.-L. Ueng, B.-J. Yang, C.-J. Yang, H.-C. Lee, and J.-D. Yang, “An efficient multi-standard LDPC decoder design using hardware-friendly shuffled decoding,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 3, pp. 743–756, Mar. 2013.
[27] T.-Y. Chen, D. Divsalar, J. Wang, and R. D. Wesel, “Protograph-based raptor-like LDPC codes for rate compatibility with short blocklengths,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM), Houston, TX, Dec. 2011, pp. 1–6.
[28] T.-Y. Chen, D. Divsalar, and R. D. Wesel, “Protograph-based raptor-like LDPC codes with low thresholds,” in Proc. IEEE Int. Conf. Commun. (ICC), Ottawa, ON, Jun. 2012, pp. 2161–2165.
[29] C.-Y. Lin, C.-C. Wei, and M.-K. Ku, “Efficient encoding for dual-diagonal structured LDPC codes based on parity bit prediction and correction,” in Proc. IEEE Asia Pacific Conf. Circuits and Syst. (APCCAS), Macao, Nov. 2008, pp. 1648–1651.
[30] S.-H. Kuo, Y. L. Guan, S.-K. Lee, and M.-C. Lin, “A design of physical-layer raptor codes for wide SNR ranges,” IEEE Commun. Lett., vol. 18, no. 3, pp. 491–494, Mar. 2014.
[31] R. Barron, C. Lo, and J. Shapiro, “Global design methods for raptor codes using binary and higher-order modulations,” in Proc. IEEE Military Comm. Conf.(MILCOM), Oct. 2009, pp. 1–7.
[32] G. Y. C. Gong and X. Wang, “Analysis and optimization of a rateless coded joint relay system,” IEEE Trans. Wireless Commun., vol. 9, no. 3, pp. 1175–1185, Mar. 2010.
[33] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-approaching irregular low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001.
[34] M. Fu, “On gaussian approximation for density evolution of low-density parity-check codes,” in Proc. IEEE Int. Conf. Commun. (ICC), Istanbul, Jun. 2006, pp. 1107–1112.
[35] K. Xie and J. Li, “On accuracy of Gaussian assumption in iterative analysis for LDPC codes,” in Proc. IEEE Int. Symp. Inform. Theory(ISIT), Jul. 2006, pp. 2398–2402.
[36] S. Y. Chung, J. G. D. Forney, T. Richardson, and R. L. Urbanke, “On the design of low-density parity-check codes within 0.0045 db of the shannon limit,” IEEE Commun. Lett., vol. 5, no. 2, pp. 58–60, Feb. 2001.
[37] K. Hu, J. Castura, and Y. Mao, “Reduced-complexity decoding of raptor codes over fading channels,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM), San Francisco, CA, Nov. 2006, pp. 1–5.
[38] M. Fossorier, M. Mihaljević, and H. Imai, “Reduced complexity iterative decoding of low-density parity check codes based on belief propagation,” IEEE Trans. Commun., vol. 47, no. 5, pp. 673–680, May 1999.
[39] J. Chen and M. Fossorier, “Density evolution for two improved BP-based decoding algorithms of LDPC codes,” IEEE Commun. Lett., vol. 6, no. 5, pp. 208–210, May 2002.
[40] S. ten Brink and G. Kramer, “Design of repeat–accumulate codes for iterative detection and decoding,” IEEE Trans. Signal Processing, vol. 51, no. 11, pp. 2764–2772, Nov. 2003.
[41] A. Roumy, S. Guemghar, G. Caire, and S. Verdu, “Design methods for irregular repeat-accumulate codes,” IEEE Trans. Inform. Theory, vol. 50, no. 8, pp. 1711–1727, Aug. 2004.
[42] S.-H. Kuo, H.-C. Lee, Y.-L. Ueng, and M.-C. Lin, “A construction of physical-layer systematic Raptor codes based on protographs,” IEEE Commun. Lett., accepted.
[43] W. Ryan and S. Lin, Channel Codes. Combridge University Press, 2009.
[44] R. Asvadi and A. H. Banihashemi, “A rate-compatible puncturing scheme for finite-length LDPC codes,” IEEE Commun. Lett., vol. 17, no. 1, pp. 147–150, Jan. 2013.
[45] H.-K. Wu, “Some results on physical-layer Raptor codes,” M. S. thesis, National Taiwan University, Taiwan, 2015.
[46] Y. Jin, M. Jiang, and C. Zhao, “Optimized variable degree matched mapping for protograph LDPC coded modulation with 16QAM,” in Proc. Int. Symp. Turbo Codes and Iterative Inform. (ISTC), Brest, Sep. 2010, pp. 161–165.
[47] C. Tang, H. Shen, M. Jiang, and C. Zhao, “Optimization of generalized VDMM for protograph-based LDPC coded BICM,” IEEE Commun. Lett., vol. 18, no. 5, pp. 853–856, May 2014.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top