跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/03 12:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張育銓
研究生(外文):Yu-Chuan Chang
論文名稱:S/C及K頻段低雜訊放大器與W頻段注入鎖定式倍頻器之研究
論文名稱(外文):Research of S/C and K-band Low Noise Amplifiers and W-band Injection Locked Frequency Multiplier
指導教授:王暉
口試委員:黃天偉林坤佑蔡作敏章朝盛
口試日期:2015-07-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:84
中文關鍵詞:低雜訊放大器倍頻器金氧半場效電晶體微波單晶積體電路
外文關鍵詞:low noise amplifierMultiplierMMICpHEMTCMOSSKA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:79
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,微波在工程上的應用蓬勃發展,尤其在無線通訊的應用當中扮演了舉足輕重的角色。高速通訊在今日越來越受到矚目,而無論在有線或是無線的通訊系統中,低雜訊放大器及穩定的信號源都很重要。
本論文主要分成兩部分:第一部分為接收器前端電路之低雜訊放大器相關研究。低雜訊放大器在射頻接收前端系統為一重要元件;它將從天線端接收之微弱的射頻訊號放大並導入較少的雜訊。首先,呈現製作於0.15微米砷化鎵製程,應用於SKA天文計畫之低雜訊放大器研製。藉由準確地選擇電路架構,此低雜訊放大器在2.8到5.18兆赫茲系統規格之頻帶內提供足夠增益(27.5 ± 0.5 dB)及雜訊指數(1 ± 0.2 dB)。
除了低頻帶低雜訊放大器,本論文另展示兩個應用於K頻帶之17.7到20.7兆赫茲之低雜訊放大器。第一顆電路採兩級架構,第一級為共源級架構並串接一疊接組態架構。共源級架構相對於疊接組態有較小的雜訊指數,應此常為低雜訊放大器第一級電路架構。第二顆電路採兩級疊接組態架構,並使用雜訊抑制機制,選擇更小尺寸電晶體當放大單元以降低功耗,並於疊接元件之間加上電感來抑制雜訊並提高高頻穩定度。此兩顆電路皆達到頻帶內增益皆大於15 dB,雜訊指數皆小於3 dB。
第二部分是應用於汽車雷達本地振盪源鍊路之六倍頻器研製。倍頻器目前廣泛使用在射頻收發機系統上,主要功用為將輸入訊號的頻率輸出成特定倍數頻率輸出的諧振電路。一般倍頻器之係數通常不超過四倍,超過四倍時,則以串接多級方式實現。一般傳統六倍頻器多使用二乘三或三乘二架構來實現。但一般非線性放大器組態倍頻器其因低頻匹配電路常使面積過大。本篇論文提出六倍頻器電路採用注入鎖定式三倍頻器並雙推出來經緩衝放大器成六倍頻輸出。較已發表的文獻中,達到有效面積縮減。考慮到系統功率預算分配,於六倍頻器後串接一中等功率放大器。此電路採用65nm CMOS 實現,其鎖定範圍在輸入功率為 0 dBm情情況下,達到9.6 % 範圍,整體面積(含pad)為1.19 mm2。


In recent years, the applications of microwave are widely developed in engineer-ing, especially in wireless communication. Today, high-speed communications are the focus, and the low noise amplifiers and stable sources are important in regardless of wire or wireless communication systems.
This thesis is divided into two parts. The first part presents the development of low noise amplifiers for RF frond end. Low noise amplifiers are a vital element in the RF receiver front-end systems. The weak RF signals received from the antenna are amplified and import less noise in low noise amplifier. Firstly, a low noise amplifier using 0.15-μm GaAs pHEMT for SKA application is presented. By properly choosing circuit architecture, the LNA demonstrates sufficient gain, 27.5 ± 0.5 dB, and excellent noise figure, 1 ± 0.2 dB, from 2.8 to 5.12 GHz which is the SKA band-4.
Also, two K-band low noise amplifiers from 17.7 to 20.7 GHz are investigated in this thesis. Both of them are fabricated in TSMC 90 nm CMOS. The topology of the first circuit is a common source stage cascade with a cascode stage. The noise perfor-mance of common source topology is better than cascode topology and it is usually the first stage at low noise amplifier. The second circuit is two-stage cascode amplifier with choosing smaller transistor size in unit amplifier cell to reduce power consump-tion and noise cancelling technique which adds inductor between the cascode compo-nents for suppressing noise and improve the stability at high frequency band. The two amplifiers have more than 15 dB gain and lower than 3-dB noise performance in the target band.
The second part of the thesis is about an injection-locked frequency sextupler us-ing 65-nm CMOS for automotive radar applications. Multiplier is widely used in RF transceiver systems. Usually, the multiplier is not be implemented more than four times. For the multiple greater than four, the cascade topology is more popular. Tradi-tionally sextupler are often achieved by cascade doubler and tripler. However, the non-linear-amplifier-based frequency multiplier is a bit of large because of the low-frequency matching circuits. In this thesis, the injection-locked tripler with push-push topology is used to get the six times input frequency after the buffer stage. For the consideration of system power budget, a medium power amplifier is cascaded at the frequency sextupler. At input power 0 dBm, the locking range of this sextupler is 9.6 % and the area is 0.42 mm2 including pads.


誌謝 ................................................................................................................................... i
中文摘要 .......................................................................................................................... ii
ABSTRACT .................................................................................................................... iv
CONTENTS .................................................................................................................... vi
LIST OF FIGURES ....................................................................................................... viii
LIST OF TABLES ......................................................................................................... xiii
Chapter 1 Introduction ............................................................................................ 1
1.1 Background and Motivation ............................................................................. 1
1.2 Literature Survey .............................................................................................. 3
1.2.1 S-to-C band LNAs ............................................................................ 3
1.2.2 K-band LNAs ................................................................................... 5
1.2.3 W-band injection-locked frequency multipliers ............................... 6
1.3 Contributions .................................................................................................... 7
1.4 Thesis Organization .......................................................................................... 9
Chapter 2 Design of a High Gain 2.8-5.2 GHz LNA in GaAs 0.15-μm pHEMT
for Square Kilometre Array Application ............................................ 10
2.1 Introduction .................................................................................................... 10
2.2 Circuit Design .................................................................................................. 11
2.2.1 Device Size and Bias Point Selection .............................................. 11
2.2.2 Circuit Topology Consideration ..................................................... 15
2.2.3 Circuit Schematic and Simulation .................................................. 19
2.3 Measurement Results ...................................................................................... 23
2.4 Summary ......................................................................................................... 25
Chapter 3 Design of K-band LNAs for Satellite Communications in 90-nm
CMOS Process ...................................................................................... 27
3.1 Introduction .................................................................................................... 27
3.2 Circuits Design ............................................................................................... 28
3.2.1 Circuits Topology ........................................................................... 28
3.2.2 Device Size Selection ..................................................................... 31
3.2.3 Noise Reduction Technique ............................................................ 36
3.2.4 Circuits Simulation ......................................................................... 41
3.3 Experiment Results ......................................................................................... 45
3.3.1 Measurement Results ...................................................................... 45
3.3.2 Discussion ....................................................................................... 48
3.4 Summary ......................................................................................................... 55
Chapter 4 A W-band Injection Locked Frequency Sextupler Using 65-nm
CMOS Technology for Automotive Radar Applications ................... 57
4.1 Introduction .................................................................................................... 57
4.2 Circuit Design and Simulation ....................................................................... 59
4.2.1 Frequency Sextupler ....................................................................... 59
4.2.2 W-band Medium Power Amplifier ................................................. 66
4.3 Experiment results .......................................................................................... 70
4.3.1 Measurement Setup ........................................................................ 70
4.3.2 Measurement Results ...................................................................... 70
4.4 Summary ......................................................................................................... 76
Chapter 5 Conclusions ........................................................................................... 78
References ...................................................................................................................... 80

[1]SKA Project, https://www.skatelscope.org
[2]P.E. Dewdney, P.J. Hall, R.T. Schilizzi, T.J.L.W. Lazio, "The Square Kilometre Array," Proceedings of the IEEE , vol.97, no.8, pp.1482-1496, Aug. 2009.
[3]H.J. Ng, R. Feger, and A. Stelzer, "A fully-integrated 77-GHz UWB pseu-do-random noise radar transceiver with a programmable sequence generator in SiGe technology," IEEE Transactions on Circuits and Systems I: Regular Papers, vol.61, no.8, pp.2444-2455, Aug. 2014.
[4]Jri Lee, Yi-An Li, Meng-Hsiung Hung, and Shih-Jou Huang, "A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology," IEEE Journal of Solid-State Circuits, vol.45, no.12, pp.2746-2756, Dec. 2010.
[5]Tang-Nian Luo, C.-H.E. Wu, and Y.-J.E. Chen, "A 77-GHz CMOS automotive ra-dar transceiver with anti-interference function," IEEE Transactions on Circuits and Systems I: Regular Papers, vol.60, no.12, pp.3247-3255, Dec. 2013.
[6]HMC807LP6CE, https://www.tittite.com
[7]L. Belostotski, and J.W. Haslett, “Wide band room temperature 0.35-dB noise figure LNA in 90-nm bulk CMOS,” in IEEE Radio Wireless Symposium. Dig., Jan., 2007.
[8]N. Shiramizu, T. Masuda, M. Tanabe, and K. Washio, “A 3-10 GHz bandwidth low-noise and low-power amplifier for full-band UWB communications in 0.25-µm SiGe BiCMOS technology,” IEEE Radio Frequency Integrated Circuits Symposium. Dig., Jun., 2005.
[9]J.-S. Yao, X.-P. Sun, and B. Lin, “1.5–2.7 GHz ultra-low noise bypass LNA,” in IEEE MTT-S International Microwave Symposium (IMS), 2014, pp.1-3, 1-6 June 2014
[10]P.-L. Hai, K. Shah, and J. Singh, “A fully-on-chip wideband low noise amplifier for radio telescope applications,” in IEEE International Symposium on Circuits and Systems, May, 2009.
[11]C.-C. Chiong, W.-J. Tzeng, Y.-J. Hwang, W.-T. Wong, H. Wang, and M.-T. Chen, “Design and measurements of cryogenic MHEMT IF low noise amplifier for ra-dio astronomical receivers,” in Eur. Microw. Integr. Circuits Conf., Oct. 2009, pp.1-4.
[12]H.-L Kao, C.-S. Yeh, C.-L. Cho, B.-W. Wang, P.-C. Lee, B.-H. Wei, and H.-C. Chiu, “Design of an S-band 0.35 µm AlGaN/GaN LNA using cascode topology,” IEEE 16th International Symposium on Design and Diagnostics of Electronic Circuits & Systems, April, 2013.
[13]Y.-Y. Peng, X.-Y. Wang, F.-Y. Ma, and W.-Q. Sui, “A low power S-band receiver using GaAs pHEMT technology,” in IEEE 1 International Symposium on Inte-grated Circuits, Dec., 2011.
[14]S.-E. Shih, W.R. Deal, D.M. Yamauchi, W.E. Sutton, W.-B. Luo, Y.-C. Chen, I.P. Smorchkova, B. Heying, M. Wojtowicz, and M. Siddiqui, “Design and analysis of ultra wideband GaN dual-gate HEMT low-noise amplifiers,” IEEE Trans. on Mi-crow. Theory and Tech., Dec., 2009.
[15]T. Lee, The design of CMOS Radio-Frequency Integrated Circuits, 2nd, Ed. New York: Cambridge University Press. 2004.
[16]F. Rossi, Chau-Ching Chiong, Huei Wang, Ming-Tang Chen, F. Jiang, P. So, S. Claude, J. Bornemann, "A wideband MMIC low noise amplifier with series and shunt feedback," International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), pp.1,2, 13-16 July 2014.
[17]Ming-Hsien Tsai, S.S.H. Hsu, Fu-Lung Hsueh, Chewn-Pu Jou, "ESD-protected K-band low-noise amplifiers using RF junction varactors in 65-nm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol.59, no.12, pp.3455-3462, Dec. 2011.
[18]E. Adabi, B. Heydari, M. Bohsali, and A.M. Niknejad, "30 GHz CMOS low noise amplifier," Radio Frequency Integrated Circuits (RFIC) Symposium, 2007 IEEE , pp.625-628, 3-5 June 2007.
[19]M. A T Sanduleanu, Gang Zhang, and J.R. Long, "31-34GHz low noise amplifier with on-chip microstrip lines and inter-stage matching in 90-nm baseline CMOS," Radio Frequency Integrated Circuits (RFIC) Symposium, 2006 IEEE, 11-13 June 2006.
[20]L. Aspemyr, H. Jacobsson, Mingquan Bao, H. Sjoland, M. Ferndahl, and G. Car-chon, "A 15 GHz and a 20 GHz low noise amplifier in 90 nm RF-CMOS," 2006 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2006. Digest of Papers, 18-20 Jan. 2006.
[21]Wei-Han Cho, and S.S.H. Hsu, "An ultra-low-power 24 GHz low-noise amplifier using 0.13 um CMOS technology," IEEE Microwave and Wireless Components Letters, vol.20, no.12, pp.681-683, Dec. 2010.
[22]Yu-Lin Wei, S.S.H. Hsu, and Jun-De Jin, "A low-power low-noise amplifier for K-band applications," IEEE Microwave and Wireless Components Letters, vol.19, no.2, pp.116-118, Feb. 2009.
[23]A. Sayag, S. Levin, D. Regev, D. Zfira, S. Shapira, D. Goren, and D. Ritter, "A 25 GHz 3.3 dB NF low noise amplifier based upon slow wave transmission lines and the 0.18 μm CMOS technology," Radio Frequency Integrated Circuits Symposium, 2008. RFIC , pp.373-376, June 17 2008-April 17 2008.
[24]G.W. de Jong, D.M.W. Leenaerts, and E. van der Heijden, "A fully integrated Ka-band VSAT down-converter," IEEE Journal of Solid-State Circuits, vol.48, no.7, pp.1651-1658, July 2013.
[25]R. Limacher, A. Megej, L. Scoca, T. Zaugg, H. Meier, Andrea Orzati, Werner Bachtold, "Broadband low-noise amplifiers for K-band Q-bands using 0.2 μm InP HEMT MMIC technology," IEEE Compound Semiconductor Integrated Circuit Symposium, 2004. pp.305-308, 24-27 Oct. 2004.
[26]S. Fujimoto, T. Katoh, T. Ishida, T. Oku, Y. Sasaki, T. Ishikawa, Y. Mitsui, “Ka-band ultra-low noise MMIC amplifier using pseudomorphic HEMTs,” IEEE MTT-S International Microwave Symposium Digest, Vol. 1, pp. 7 – 20, June 1997.
[27]D.P. Chang, I.B. Yom, S.H. Oh, "Ka-band LNA module with 1.9dB NF for com-munications satellite payload," Asia-Pacific Conference Proceedings Microwave Conference Proceedings, 4-7 Dec. 2005.
[28]Kuo-Jung Sun, Zuo-Min Tsai, Kun-You Lin, Huei Wang, "A 10.8-GHz CMOS low-noise amplifier using parallel-resonant inductor," IEEE/MTT-S International, Microwave Symposium, pp.1795-1798, 3-8 June 2007.
[29]Bo-Jr Huang, Kun-You Lin, Huei Wang, "Millimeter-wave low power and minia-ture CMOS multicascode low-noise amplifiers with noise reduction topolo-gy," IEEE Transactions on Microwave Theory and Techniques, vol.57, no.12, pp.3049-3059, Dec. 2009.
[30]Hsin-Chih Kuo, Huey-Ru Chuang, "A 60-GHz high-gain, low-power, 3.7-dB noise-figure low-noise amplifier in 90-nm CMOS," 2013 European Microwave Conference (EuMC), pp.1555-1558, 6-10 Oct. 2013
[31]Y.L-Yeh, and H.Y-Chang, "A W-Band wide locking range and low dc power injec-tion-locked frequency tripler using transformer coupled technique," IEEE Trans-actions on Microwave Theory and Techniques, vol.61, no.2, pp.860,870, Feb. 2013.
[32]E. Monaco, M. Pozzoni, F. Svelto, A. Mazzanti, "Injection-locked CMOS fre-quency doublers for μ -wave and mm-wave applications," IEEE Journal of Sol-id-State Circuits, vol.45, no.8, pp.1565-1574, Aug. 2010.
[33]Yen-Liang Yeh, Chih-Sheng Huang, Hong-Yeh Chang, "A 20.7% locking range W-band fully integrated injection-locked oscillator using 90 nm CMOS technol-ogy," IEEE MTT-S International Microwave Symposium Digest (IMS), pp.1,3, 17-22 June 2012.
[34]Behzad Razavi, "A study of injection locking and pulling in oscillators," IEEE Journal of Solid-State Circuits, vol.39, no.9, pp. 1415-1424, Sep, 2004.
[35]Zhiming Chen, P. Heydari, "An 85-95.2 GHz transformer-based injection-locked frequency tripler in 65nm CMOS," IEEE MTT-S International Microwave Sympo-sium Digest (IMS), pp.776-779, 23-28 May 2010.
[36]Taeksang Song, Euisik Yoon, "A 1-V 5 GHz low phase noise LC-VCO using volt-age-dividing and bias-level shifting technique," Digest of Papers. Topical Meet-ing on Silicon Monolithic Integrated Circuits in RF Systems, pp.87-90, 8-10 Sept. 2004.
[37]Qixian Shi, D. Guermandi, V. Giannini, P. Wambacq, "A 5th subharmonic, invert-er-based injection locked oscillator with 72–83 GHz locking range," IEEE Radio Frequency Integrated Circuits Symposium, pp.185-188, 1-3 June 2014.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top