跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/08/04 20:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:伍麟奇
研究生(外文):Lin-Chi Wu
論文名稱:上行預編碼通用濾波多載波系統之領航訊號能量分配設計
論文名稱(外文):Pilot Signal Power Allocation Design for Uplink Precoded Universal-Filtered Multi-Carrier System
指導教授:蘇柏青
口試委員:馮世邁顏嘉邦
口試日期:2015-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:44
中文關鍵詞:通用濾波多載波系統正交分頻多工系統最小均方根通道估測方法帕克斯-麥克倫演算法多夫-柴比雪夫窗
外文關鍵詞:Universal-Filtered Multi-CarrierOFDMMinimum Mean Square Error Channel Estimation AlgorithmParks–McClellan Filter Design AlgorithmDolph-Chebyshev Window
相關次數:
  • 被引用被引用:0
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,我們提出在預編碼通用濾波多載波系統下引示信號能量分配方法來降低最小均方根通道估測誤差。通用濾波多載波系統是一個多載波傳送系統來克服正交分頻多工系統中載波間干擾的問題。通用濾波多載波系統對一整個資源區塊濾波來降低對旁邊資源區塊的干擾。在有載波頻率偏移環境下,通用濾波多載波系統跟正交分頻多工系統相比有較好的表現,然而通用濾波多載波系統會增加通道長度由於對一整個資源區塊濾波。基於以上性質,我們提出引示信號能量分配方法來降低通道估測誤差。而模擬結果也顯示我們提出的引示信號能量分配方法的確降低了通道估測誤差。

In this thesis, we study the minimum mean square error(MMSE) channel estimation algorithm and design the pilot signal power allocation to reduce
channel estimation error in precoded universal-filtered multi-carrier (UFMC) system. UFMC system is a multi-carrier transmission scheme to overcome
the problem of inter-carrier interference (ICI) in orthogonal frequency division multiplexing (OFDM) systems. In UFMC scheme, a filtering
operation is applied to a group of consecutive subcarriers in order to reduce out-of-band
sidelobe levels and subsequently minimize the potential ICI between adjacent users in case of asynchronous transmissions.
Despite the fact that UFMC have better performance than OFDM in carrier frequency offset environment, UFMC have lengthen channel taps
because of the filter.
Based on this properity, we propose a method about pilot signal power allocation to reduce channel estimation error in precoded UFMC system.
And simulation result shows that the pilot signal power allocation we proposed really reduce the channel estimation error.

Contents
List of figures iii
List of tables v
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 System model 5
2.1 Uplink Precoded UFMC System Model . . . . . . . . . . . . . . . . . 6
2.1.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 MMSE channel estimator . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 Proposed Pilot Signal Design in Uplink Precoded UFMC System 17
3.1 Pilot Signal Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Some Properties on Designed Pilot Signal . . . . . . . . . . . . . . . . 20
4 Simulation Results 21
5 Conclusion 39

Bibliography
[1] Hamid Saeedi-Sourck et al. “Complexity and performance comparison of filter bank multicarrier and OFDM in uplink of multicarrier multiple access networks”. In: Signal Processing, IEEE Transactions on 59.4 (2011), pp. 1907–1912.
[2] B. Farhang-Boroujeny. “OFDM Versus Filter Bank Multicarrier”. In: Signal Processing Magazine, IEEE 28.3 (May 2011), pp. 92–112. issn : 1053-5888. doi :
10.1109/MSP.2011.940267.
[3] G. Fettweis, M. Krondorf, and S. Bittner. “GFDM - Generalized Frequency Di-
vision Multiplexing”. In: Vehicular Technology Conference, 2009. VTC Spring
2009. IEEE 69th. Apr. 2009, pp. 1–4. doi : 10.1109/VETECS.2009.5073571.
[4] V. Vakilian et al. “Universal-filtered multi-carrier technique for wireless systems
beyond LTE”. In: Globecom Workshops (GC Wkshps), 2013 IEEE. Dec. 2013,
pp. 223–228. doi : 10.1109/GLOCOMW.2013.6824990.
[5] G. Wunder et al. “5GNOW: Intermediate frame structure and transceiver con-
cepts”. In: Globecom Workshops (GC Wkshps), 2014. Dec. 2014, pp. 565–570.
doi : 10.1109/GLOCOMW.2014.7063492.
[6] G. Wunder et al. “5GNOW: Challenging the LTE Design Paradigms of Orthog-
onality and Synchronicity”. In: Vehicular Technology Conference (VTC Spring),
2013 IEEE 77th. June 2013, pp. 1–5. doi : 10.1109/VTCSpring.2013.6691814.
[7] J.G. Andrews et al. “What Will 5G Be?” In: Selected Areas in Communications,
IEEE Journal on 32.6 (June 2014), pp. 1065–1082. issn : 0733-8716. doi : 10.
1109/JSAC.2014.2328098.
[8] Maximilian Matthe et al. “Multi-user time-reversal STC-GFDMA for future
wireless networks”. In: EURASIP Journal on Wireless Communications and
Networking 2015.1 (2015), pp. 1–8.
[9] F. Schaich and T. Wild. “Waveform contenders for 5G ; OFDM vs. FBMC
vs. UFMC”. In: Communications, Control and Signal Processing (ISCCSP),
2014 6th International Symposium on. May 2014, pp. 457–460. doi : 10.1109/
ISCCSP.2014.6877912.
[10] T. Wild, F. Schaich, and Yejian Chen. “5G air interface design based on Uni-
versal Filtered (UF-)OFDM”. In: Digital Signal Processing (DSP), 2014 19th
International Conference on. Aug. 2014, pp. 699–704. doi : 10.1109/ICDSP.
2014.6900754.
[11] G. Wunder et al. “5GNOW: non-orthogonal, asynchronous waveforms for future
mobile applications”. In: Communications Magazine, IEEE 52.2 (Feb. 2014),
pp. 97–105. issn : 0163-6804. doi : 10.1109/MCOM.2014.6736749.
[12] F. Schaich and T. Wild. “Relaxed synchronization support of universal filtered
multi-carrier including autonomous timing advance”. In: Wireless Communi-
cations Systems (ISWCS), 2014 11th International Symposium on. Aug. 2014,
pp. 203–208. doi : 10.1109/ISWCS.2014.6933347.
[13] Peiying Zhu. “New Waveform and Multiple Access Evaluations”. In: (Jan. 25,
2014, NGMN).
[14] Michele Morelli, CC Jay Kuo, and Man-On Pun. “Synchronization techniques
for orthogonal frequency division multiple access (OFDMA): A tutorial review”.
In: Proceedings of the IEEE 95.7 (2007), pp. 1394–1427.
[15] Jin Xinzhu. “Channel Estimation Techniques of SC-FDMA”. In: (2007).
[16] Yuan-Pei Lin, See-May Phoong, and PP Vaidyanathan. Filter bank transceivers
for OFDM and DMT systems. Cambridge University Press, 2010.
[17] Geoff Gordon and Ryan Tibshirani. “Karush-kuhn-tucker conditions”. In: Op-
timization 10.725/36 (2012), p. 725.
[18] 3GPP TS 36.101. “User Equipment (UE) Radio Transmission and Reception.”
In: 3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA). (2010).
[19] 3GPP TS 36.104. “Base Station (BS) radio transmission and reception.” In:
3rd Generation Partnership Project; Technical Specification Group Radio Access
Network; Evolved Universal Terrestrial Radio Access (E-UTRA) (2010).
[20] L.J. Karam and J.H. McClellan. “Complex Chebyshev approximation for FIR
filter design”. In: Circuits and Systems II: Analog and Digital Signal Processing,
IEEE Transactions on 42.3 (Mar. 1995), pp. 207–216. issn : 1057-7130. doi :
10.1109/82.372870.
[21] Xiaojie Wang, Thorsten Wild, and Frank Schaich. “Filter Optimization for
Carrier-Frequency- and Timing-Offset in Universal Filtered Multi-Carrier Sys-
tems”. In: Vehicular Technology Conference (VTC Spring), 2015 IEEE 81st.
May 2015, pp. 1–6. doi : 10.1109/VTCSpring.2015.7145842.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文