跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/30 04:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳贊羽
研究生(外文):Zanyu Chen
論文名稱:下一代異質性網路智能技術之研究
論文名稱(外文):On the Efficiency of Intelligent Technologies for Next Generation Heterogeneous Networks
指導教授:林宗男林宗男引用關係
指導教授(外文):Tsung-Nan Lin
口試委員:王奕翔蔡志宏廖婉君陳俊良蔡子傑
口試委員(外文):I-Hsiang WangZsehong TsaiWanjiun LiaoJiann-Liang ChenTzu-Chieh Tsai
口試日期:2015-07-20
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:122
中文關鍵詞:異質性網路合作式通訊轉傳選擇干擾管理近乎空白子訊框原對偶內點法
外文關鍵詞:Heterogeneous NetworkCooperative CommunicationRelay SelectionInterference ManagementAlmost Blank SubframePrimal-Dual Interior Point Method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在今日的異質性網路中包含了許多的大、小型基站,然而目前這些基站的配置無法滿足未來的使用者需求,實際上在對來的預測當中,至少在2020年的時候需要比今日還要增加100倍的網路容量,才有辦法應付各方面的需求,因此網路的供應商和營運商們,仔細思考著他們手邊所能夠使用的方法,來提升網路的容量。在這場即將到來的戰役之中,有三個面向是值得來思考的:增加網路的密度、使用更多的頻譜和增加頻譜使用效率的各種技術。在本論文當中,我們針對在增加網路密度所遭遇到的各種可能情況來研究,增加網路的密度會採用大量的小型基站,像是家用基站、微型基站和轉傳節點。本論文主要分為兩個部份來探討:首先是關於在合作式通訊當中,轉傳節點選擇的問題,第二個主題是在異質性網路當中干擾管理的問題,關於第一個主題,我們提出了一個完全分散式的演算法稱為「分散式學習為基礎的轉傳選擇」,解決在合作式通訊中的轉傳選擇問題,另一方面在第二個主題當中,我們提出一個稱為「多調子訊框」方案,來減輕在異質性網路當中的干擾問題。

Today''s heterogeneous networks comprised of mostly macrocells and small cells will not be able to meet the upcoming traffic demands. Indeed, it is forecasted that at least a 100$ imes$ network capacity increase will be required to meet the traffic demands in 2020. As a result, vendors and operators are now looking at using every tool at hand to improve network capacity. In this epic campaign, three paradigms are noteworthy, i.e., network densification, the use of of higher frequency bands, and spectral efficiency enhancement technique. In this dissertation, we focus on the issue on network densification, which contains many small cells in the network such as femtocells, picocells and relay nodes. The dissertation can be divided into two parts: the first one is about relay node selection in cooperative communication, and the other is about interference management in heterogeneous networks. We proposed an fully decentralized algorithm call "Decentralized Learning based Relay Assignment" algorithm to solve the relay assignment problem in cooperative communication. On the other hand, in the topic about interference management, we propose an approach called "Multi-Tone Subframes" to mitigate the interference in heterogeneous networks.

List of Figures v
List of Tables ix
1 Introduction 1
1.1 Technology Trends and Motivations of the Dissertation . . . . . . 1
1.2 Topic to Be Addressed . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Cooperative Communication . . . . . . . . . . . . . . . . . 4
1.2.2 Interference Management . . . . . . . . . . . . . . . . . . . 5
1.3 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . 5
2 Related Work 7
2.1 Cooperative Communication . . . . . . . . . . . . . . . . . . . . . 7
2.2 enhanced Inter-Cell Interference Management (eICIC) . . . . . . . 9
2.2.1 Range Expansion and Inter-cell Interference Coordination 9
2.2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . 11
3 Decentralized Learning-Based Relay Assignment for Cooperative
Communications 15
3.1 Background Information . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Cooperative Communication Modes . . . . . . . . . . . . . 18
3.2.2 Network Model . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Decentralized Learning based Relay Assignment algorithm . . . . 21
3.3.1 SLA: Stochastic Learning Automata . . . . . . . . . . . . 21
3.3.2 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . 23
3.3.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Mathematical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.1 Convergency . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.2 Asymptotic Theorems . . . . . . . . . . . . . . . . . . . . 29
3.4.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.1 Cooperative Ad Hoc Network . . . . . . . . . . . . . . . . 40
3.5.1.1 Simulation Settings . . . . . . . . . . . . . . . . . 40
3.5.1.2 Comparisons . . . . . . . . . . . . . . . . . . . . 41
3.5.2 LTE-Advanced Network . . . . . . . . . . . . . . . . . . . 43
3.5.2.1 Simulation Settings . . . . . . . . . . . . . . . . . 43
3.5.2.2 Convergency . . . . . . . . . . . . . . . . . . . . 45
3.5.2.3 Capacity and Fairness . . . . . . . . . . . . . . . 49
3.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 55
4 Multi-Tone Subframes for Enhanced Inter-Cell Interference Co-
ordination in LTE HetNets 57
4.1 Background Information . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 System Model and Problem Formulation . . . . . . . . . . . . . . 63
4.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . 64
4.3 Interior Point MTS Optimization Algorithm . . . . . . . . . . . . 67
4.3.1 Basic Idea of the Interior Point Methods . . . . . . . . . . 68
4.3.2 Detailed Description of Interior Point MTS Optimization
Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.2.1 The Relaxed Problem . . . . . . . . . . . . . . . 71
4.3.2.2 Algorithm for The Relaxed MTS Assignment Problem
. . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.2.3 Integer Rounding for Relaxed MTS Assignment . 77
4.3.2.4 Proof of Optimality . . . . . . . . . . . . . . . . 80
4.3.2.5 Complexity Analysis . . . . . . . . . . . . . . . . 80
4.3.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . 82
4.4 Numeric Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.1 Correlation Among The Approaches . . . . . . . . . . . . 83
4.4.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5.1 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . 91
4.5.2 Compare with Optimal Solution . . . . . . . . . . . . . . . 92
4.5.3 User Clustering . . . . . . . . . . . . . . . . . . . . . . . . 94
4.5.4 System Capacity . . . . . . . . . . . . . . . . . . . . . . . 99
4.5.5 Power Consumption . . . . . . . . . . . . . . . . . . . . . 102
4.5.6 VoLTE Latency . . . . . . . . . . . . . . . . . . . . . . . . 104
4.5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 105
5 Conclusion 109

[1] Qualcom, “”the 1000x mmobile data challenge: More sspectrum,
more small ccell, more indoor ccell and higher efficiency”,”
http://www.qualcomm.com/. 1
[2] X. Chu, D. L. L.-P. Yang, and F. Gunnarsson, “Heterogeneous Cellular Networks:
heory, Simulation and Deployment,” University Cambridge Press,
2013. 1
[3] H. Claussen, L. T.W. Ho, and L. G. Samuel, “An Overview of the Femtocell
Concept,” Bell Labs Technical Journal, vol. 13, no. 1, pp. 221–245, 2008.
1, 3
[4] V. Chandrasekhar, J. G. Andrews, and A. Ga, “Femtocell Networks: A
Survey,” IEEE Communications Maga, vol. 46, no. 9, pp. 59–67, 2008. 1, 3
[5] J. Andrews, H. Claussen, M. Dohler, S. Rangan, and M. Reed, “Femtocells:
Past, present, and future,” IEEE Journal on Selected Areas in Communi-
cations, vol. 30, no. 3, pp. 497–508, April. 1
[6] 3GPP TR 36.808, “Evolved Universal Terrestrial Radio Access (E-UTRA);
Carrier Aggregation; Base Station (BS) radio transmission and reception,”
2013. 1
[7] 3GPP TR 36.889, “Feasibility Study on Licensed-Assisted Access to Unlicensed
Spectrum,” 2014. 1
[8] T. S. Rappaport, R. W. H. Jr., R. C. Daniels, and J. N. Murdock, “Millimeter
Wave Wireless Communications,” Prentice Hall, 2014. 1
[9] L. L. Hanzo, Y. Akhtman, L. Wang, and M. Jiang, “MIMO-OFDM for
LTE, WiFi and WiMAX: Coherent versus Non-coherent and Cooperative
Turbo Transceivers,” John Wiley & Sons Ltd, 2011. 2
[10] M. D. Hanwen, “Muulti-point Cooperative Communication Systems: Theory
and Applications,” Springer, 2013. 2
[11] Z. S. Khoyaev and E. E. E. Pan, “Dynamic uplink-downlink configuration
and interference managemnt in TD-LTE,” IEEE Communications Maga-
zine, vol. 50, pp. 51–59, 2012. 2
[12] M. Ding, D. Lopez-Perez, and W. C. C. Vasilakos, “Dynamic TDD TTransmission
in Homogeneous Small Cell Networks,” IEEE International Con-
ference on Communications (ICC), 2014. 2, 13
[13] Webb, “Wireless Communications: Is the Future Playing Out as Predicted?”
International Journal of Interdisciplinary Telecommunications
and Networking, vol. 1, 2009. 2
[14] Cisco, “Cisco visula networking index: Global mobile data traffic forecast
update, 2014 – Global Mobile Data TTraffic Forecast Update, 2014–2019,”
White Paper, 2015. 3
[15] A. Damnjanovic, J. Montojo, Y.Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo,
O. Song, and D. Malladi, “A survey on 3GPP heterogeneous networks,”
IEEE Wireless Communications, vol. 18, no. 3, pp. 10 –21, June 2011. 3,
58
[16] D. Lopez-Perez, I. Guvenc, G. de la Roche, M. Kountouris, T. Q. S. Quek,
and Z. Jie, “Enhanced Inter-Cellell Interference Coordination Challenges in
Heterogeneous Networks,” IEEE Wireless Communications, vol. 18, no. 3,
pp. 22–30, 2011. 3, 58
[17] S. C. Forum, “Small Cell Market Status Dec 2012,” White paper, 2012. 3
[18] D. Lopez-Perez, A. Valcarce, G. de la Roche, and J. Zhang, “OFDMA
femtocells: A roadmap on interference avoidance,” IEEE Communications
Magazine, vol. 47, no. 9, pp. 41–48, September 2009. 3
[19] D. Lopez-Perez, X. Chu, and I. Guvenc, “On the Expanded Region of
Picocells in Heterogeneous Networks,” IEEE Journal of Selected Topics in
Signal Processing, vol. 6, no. 3, pp. 281 –294, June 2012. 3, 11
[20] 3GPP TS 36.300, “Evolved Universal Terrestrial Radio Access (E-UTRA):
Further Advancements for E-UTRA Physical Layer Aspects,” Technical
Specification Group Radio Access Network, April 2010. 5, 60
[21] E. C. V. D. Meulen, “Three terminal communication channels,” Advanced
in Applied Probability, vol. 3, pp. 120–154, 1971. 7
[22] T. Cover and A. Gamal, “Capacity theorems for the relay channel,” IEEE
Transactions on Information Theory, vol. 25, no. 5, pp. 572–584, 1979. 7
[23] Y. Zhao, R. Adve, and T. J. Lim, “Improving amplify-and-forward relay
networks: optimal power allocation versus selection,” IEEE Transactions
on Wireless Communications, vol. 6, no. 8, pp. 3114–3123, 2007. 7, 15
[24] Y. Yang, H. Hu, J. Xu, and G. Mao, “Relay technologies for WiMax and
LTE-advanced mobile systems,” IEEE Communications Magazine, vol. 47,
no. 10, pp. 100–105, 2009. 7
[25] Y. Jing and H. Jafarkhani, “Single and multiple relay selection schemes and
their achievable diversity orders,” IEEE Transactions on Wireless Commu-
nications, vol. 8, no. 3, pp. 1414–1423, 2009. 7
[26] D. Yang, X. Fang, and G. Xue, “HERA: An Optimal Relay Assignment
Scheme for Cooperative Networks,” IEEE Journal on Selected Areas in
Communications, vol. 30, no. 2, pp. 245–253, 2012. 8
[27] X. Zhang, A. Ghrayeb, and M. Hasna, “On relay assignment in networkcoded
cooperative systems,” IEEE Transactions on Wireless Communica-
tions, vol. 10, no. 3, pp. 868–876, 2011. 8
[28] P. Li, S. Guo, W. Zhuang, and B. Ye, “Capacity Maximization in Cooperative
CRNs: Joint Relay Assignment and Channel Allocation,” in IEEE
ICC, June 2012, pp. 6619–6623. 8
[29] M. Peng, C. Yang, Z. Zhao, W. Wang, and H.-H. Chen, “Cooperative network
coding in relay-based imt-advanced systems,” IEEE Communications
Magazine, vol. 50, no. 4, pp. 76–84, 2012. 8
[30] C. Fragouli, D. Katabi, A. Markopoulou, M. Medard, and H. Rahul, “Wireless
Network Coding: Opportunities & Challenges,” in IEEE Military Com-
munications Conference, 2007., 2007, pp. 1–8. 8
[31] N. Linh-Trung, V. N. Q. Bao, P. Duhamel, and M. Debbah, “Challenging
issues in multimedia transmission over wireless networks based on network
coding,” in 2012 IEEE International Symposium on Signal Processing and
Information Technology (ISSPIT), 2012, pp. 000 124–000 128. 8
[32] J. Cai, X. Shen, J. W. Mark, and A. Alfa, “Semi-distributed user relaying
algorithm for amplify-and-forward wireless relay networks,” IEEE Trans-
actions on Wireless Communications, vol. 7, no. 4, pp. 1348–1357, 2008. 8,
9, 16
[33] Y. Shi, S. Sharma, Y. T. Hou, and S. Kompella, “Optimal Relay Assignment
for Cooperative Communications,” in Proceedings of the 9th ACM in-
ternational symposium on Mobile ad hoc networking and computing. Hong
Kong, Hong Kong, China: ACM, 2008, pp. 3–12. 8
[34] Y. Li, B. Vucetic, Z. Zhou, and M. Dohler, “Distributed adaptive power allocation
for wireless relay networks,” IEEE Transactions on Wireless Com-
munications, vol. 6, no. 3, pp. 948–958, 2007. 8
[35] M. Chen, S. Serbetli, and A. Yener, “Distributed power allocation strategies
for parallel relay networks,” IEEE Transactions on Wireless Communica-
tions, vol. 7, no. 2, pp. 552–561, 2008. 8
[36] S. Kadloor and R. Adve, “Relay selection and power allocation in cooperative
cellular networks,” IEEE Transactions on Wireless Communications,
vol. 9, no. 5, pp. 1676–1685, 2010. 8
[37] R. Madan, N. Mehta, A. Molisch, and J. Zhang, “Energy-efficient cooperative
relaying over fading channels with simple relay selection,” IEEE
Transactions on Wireless Communications, vol. 7, no. 8, pp. 3013–3025,
2008. 8
[38] C. Y. Lee and G. Hwang, “Fair and minimal power allocation in a two-hop
relay network for qos support,” IEEE Transactions on Wireless Communi-
cations, vol. 10, no. 11, pp. 3864–3873, 2011. 8
[39] S. Mallick, M. Rashid, and V. Bhargava, “Joint relay selection and power
allocation for decode-and-forward cellular relay network with channel uncertainty,”
IEEE Transactions on Wireless Communications, vol. 11, no. 10,
pp. 3496–3508, 2012. 8
[40] T. Guo and R. Carrasco, “Crbar: Cooperative relay-based auto rate mac
for multirate wireless networks,” IEEE Transactions on Wireless Commu-
nications, vol. 8, no. 12, pp. 5938–5947, 2009. 8
[41] N. Yi, Y. Ma, and R. Tafazolli, “Joint rate adaptation and best-relay selection
using limited feedback,” IEEE Transactions on Wireless Communica-
tions, vol. 12, no. 6, pp. 2797–2805, 2013. 8
[42] M. Abouelseoud and A. Nosratinia, “Heterogeneous relay selection,” IEEE
Transactions on Wireless Communications, vol. 12, no. 4, pp. 1735–1743,
2013. 8
[43] S. Sharma, Y. Shi, Y. Hou, and S. Kompella, “An optimal algorithm for
relay node assignment in cooperative ad hoc networks,” IEEE/ACM Trans-
actions on Networking, vol. 19, no. 3, pp. 879–892, 2011. 8, 15, 17, 40, 41,
42
[44] D. Yang, X. Fang, and G. Xue, “OPRA: Optimal Relay Assignment for
Capacity Maximization in Cooperative Networks,” in 2011 IEEE Interna-
tional Conference on Communications (ICC), 2011, pp. 1–6. 8, 15
[45] 3GPP TR 36.839, “Evolved Universal Terrestrial Radio Access (E-UTRA);
Mobility Enhancements in Heterogeneous Networks.” V 11.1.0, 2012.
[46] 3GPP R1-113806, “Performance Study on ABS with Reduced Macro
Power,” Pana, 2011. 9, 10
[47] 3GPP R1-113118, “Performance Evaluation of CEll Range Expansion in
Combination with ABS Ratio Optimization,” Panaso, 2011. 9
[48] M. Simsek, M. Bennis, and I. Guvenc, “Learning Based Frequency- and
Time-Domain Inter-Cell Interference Coordination in HetNets,” IEEE
Transactions on Vehicular Technology, vol. PP, no. 99, pp. 1–1, 2014. 9
[49] 3GPP R1-104968, “New work item proposal: EEnhanced ICIC for non-CA
Based Deployments of Heterogeneous Networks for LTE,” CMCC, 2010. 10
[50] 3GPP TS 36.133, “Evolved Universal Terrestrial Radio Access (E-UTRA);
Requirements for support of radio resource management.” V 11.4.0, 2013.
11
[51] A. Morimoto, N. Miki, and Y. Okumura, “Investigation of Inter-Cell Interference
Coordination Applying Transmission Power Reduction in Heterogeneous
Networks for LTE-Advanced Downlink,” IEICE Transactions on
Communications, vol. E96-B, no. 6, pp. 1327–1337, 2013. 11
[52] I. Guvenc, M.-R. Jeong, I. Demirdogen, B. Kecicioglu, and F. Watanabe,
“Range Expansion and Inter-Cell Interference Coordination (ICIC) for Picocell
Networks,” in 2011 IEEE Vehicular Technology Conference (VTC
Fall), Sept 2011, pp. 1–6. 11
[53] S. Brueck, “Heterogeneous networks in LTE-Advanced,” in 2011 8th Inter-
national Symposium on Wireless Communication Systems (ISWCS), Nov
2011, pp. 171–175. 11
[54] R. Madan, J. Borran, A. Sampath, N. Bhushan, A. Khandekar, and T. Ji,
“Cell Association and Interference Coordination in Heterogeneous LTE-A
Cellular Networks,” IEEE Journal on Selected Areas in Communications,
vol. 28, no. 9, pp. 1479–1489, December 2010. 11
55] A. Damnjanovic, J. Montojo, J. Cho, H. Ji, J. Yang, and P. Zong, “UE’s role
in LTE advanced heterogeneous networks,” IEEE Communications Maga-
zine, vol. 50, no. 2, pp. 164–176, February 2012. 11
[56] S. Mukherjee and I. Guvenc, “Effects of Range Expansion and Interference
Coordination on Capacity and Fairness in Heterogeneous Networks,” in
2011 Conference Record of the Forty Fifth Asilomar Conference on Signals,
Systems and Computers (ASILOMAR), Nov 2011, pp. 1855–1859. 11
[57] M. Shirakabe, A. Morimoto, and N. Miki, “Performance Evaluation of Inter-
Cell Interference Coordination and Cell Range Expansion in Heterogeneous
Networks for LTE-Advanced Downlink,” in 2011 8th International Sympo-
sium on Wireless Communication Systems (ISWCS), Nov 2011, pp. 844–
848. 11
[58] A. Merwaday, S. Mukherjee, and I. Guvenc, “On the capacity analysis of
HetNets with range expansion and eICIC,” in 2013 IEEE Global Commu-
nications Conference (GLOBECOM), Dec 2013, pp. 4257–4262. 11
[59] ——, “HetNet capacity with reduced power subframes,” in 2014 IEEE
Wireless Communications and Networking Conference (WCNC), April
2014, pp. 1380–1385. 11, 13, 61
[60] ——, “Capacity analysis of LTE-Advanced HetNets with reduced power
subframes and range expansion,” EURASIP Journal on Wireless Commu-
nications and Networking, vol. 189, 2014. 11, 13
[61] A. Simonsson, “Frequency Reuse and Intercell Interference Co-Ordination
In E-UTRA,” in IEEE 65th Vehicular Technology Conference (VTC
Spring), April 2007, pp. 3091 –3095. 13
[62] J. Ellenbeck, C. Hartmann, and L. Berlemann, “Decentralized inter-cell
interference coordination by autonomous spectral reuse decisions,” in The
14th European Wireless Conference, June 2008, pp. 1 –7. 13
[63] L. G. U. Garcia, K. I. Pedersen, and P. E. Mogensen, “Autonomous Component
Carrier Selection: Interference Management in Local Area Environments
for LTE-Advanced,” IEEE Communications Magazine, vol. 47, pp.
110 – 116, September 2009. 13
[64] L. G. U. Garcia, I. Z. Kovacs, K. I. Pedersen, G. W. O. da Costa, and P. E.
Mogensen, “Autonomous Component Carrier Selection for 4G Femtocells
- A fresh look at an old problem,” IEEE Journal on Selected Areas in
Communications, vol. 30, pp. 525 – 537, 2012. 13
[65] G. Costa, A. Cattoni, I. Kovacs, and P. Mogensen, “A fully distributed
method for dynamic spectrum sharing in femtocells,” in IEEE Wireless
Communications and Networking Conference Workshops (WCNCW), April
2012, pp. 87 –92. 13
[66] Z. Chen and T. Lin, “Stochastic Learning Automata Based Resource Allocation
for LTE-Advanced Heterogeneous Networks,” in IEEE 24th Interna-
tional Symposium on Personal Indoor and Mobile Radio Communications
(PIMRC), 2013, pp. 1952–1956. 13, 22
[67] I.-H. Wang and D. Tse, “Interference mitigation through limited receiver
cooperation,” IEEE Transactions on Information Theory, vol. 57, no. 5,
pp. 2913–2940, 2011. 13
[68] M. Cierny, W. Haining, R. Wichman, D. Zhi, and C. Wijting, “On Number
of Almost Blank Subframes in Heterogeneous Cellular Networks,” IEEE
Transactions on Wireless Communications, vol. 12, no. 10, pp. 5061–5073,
2013. 13
[69] S. Deb, P. Monogioudis, J. Miernik, and J. Seymour, “Algorithms for
Enhanced Inter-Cell Interference Coordination (eICIC) in LTE HetNets,”
IEEE/ACM Transactions on Networking, vol. 22, no. 1, pp. 137–150, Feb
2014. 13
[70] M. Vajapeyam, A. Damnjanovic, J. Montojo, T. Ji, Y. Wei, and D. Malladi,
“Downlink FTP Performance of Heterogeneous Networks for LTEAdvanced,”
in 2011 IEEE International Conference on Communications
Workshops (ICC), June 2011, pp. 1–5. 13
[71] D. Lopez-Perez and H. Claussen, “Duty cycles and load balancing in Het-
Nets with eICIC almost blank subframes,” in 2013 IEEE 24th Interna-
tional Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC Workshops), Conference Proceedings, pp. 173–178. 13
[72] B. Soret and K. Pedersen, “Macro transmission power reduction for HetNet
co-channel deployments,” in 2012 IEEE Global Communications Confer-
ence (GLOBECOM), Dec 2012, pp. 4126–4130. 13
[73] B. Soret and K. I. Pedersen, “Centralized and Distributed Solutions for
Fast Muting Adaptation in LTE-Advanced HetNets,” IEEE Transactions
on Vehicular Technology, vol. 64, no. 1, pp. 147–158, Jan 2015. 13
[74] A. Nosratinia, T. Hunter, and A. Hedayat, “Cooperative communication in
wireless networks,” IEEE Communications Magazine, vol. 42, no. 10, pp.
74–80, 2004. 15
[75] J. Laneman, D. Tse, and G. W. Wornell, “Cooperative diversity in wireless
networks: Efficient protocols and outage behavior,” IEEE Transactions on
Information Theory, vol. 50, no. 12, pp. 3062–3080, 2004. 15, 18
[76] G. Li and H. Liu, “Resource allocation for ofdma relay networks,” in Confer-
ence Record of the Thirty-Eighth Asilomar Conference on Signals, Systems
and Computers, 2004., vol. 1, 2004, pp. 1203–1207 Vol.1. 15
[77] I. Maric and R. Yates, “Bandwidth and power allocation for cooperative
strategies in gaussian relay networks,” in Conference Record of the Thirty-
Eighth Asilomar Conference on Signals, Systems and Computers, 2004.,
vol. 2, 2004, pp. 1907–1911 Vol.2. 15
[78] Z. Kenan and T. M. Lok, “A relay selection scheme under optimal power
allocation,” in 11th IEEE Singapore International Conference on Commu-
nication Systems, 2008, pp. 1609–1613. 15
[79] H. Wu, Y. Wang, C. Xiong, and D. Yang, “A novel relay selection scheme
with simplified power allocation for wireless relay networks,” in IEEE Global
Telecommunications Conference, 2009., 2009, pp. 1–5. 15
[80] F. Ke, S. Feng, and H. Zhuang, “Relay selection and power allocation for
cooperative network based on energy pricing,” IEEE Communications Let-
ters, vol. 14, no. 5, pp. 396–398, 2010. 15
[81] L. Song, “Relay selection for two-way relaying with amplify-and-forward
protocols,” IEEE Transactions on Vehicular Technology, vol. 60, no. 4, pp.
1954–1959, 2011. 15
[82] F. He, Y. Sun, L. Xiao, X. Chen, C.-Y. Chi, and S. Zhou, “Capacity region
bounds and resource allocation for two-way ofdm relay channels,” IEEE
Transactions on Wireless Communications, vol. 12, no. 6, pp. 2904–2917,
2013. 15
[83] A. Bletsas, A. Khisti, D. Reed, and A. Lippman, “A simple cooperative diversity
method based on network path selection,” IEEE Journal on Selected
Areas in Communications, vol. 24, no. 3, pp. 659–672, 2006. 16
[84] D. Gunduz and E. Erkip, “Outage minimization by opportunistic cooperation,”
in 2005 International Conference on Wireless Networks, Communi-
cations and Mobile Computing, vol. 2, 2005, pp. 1436–1442 vol.2. 16
[85] A. Barto and P. Anandan, “Pattern-recognizing stochastic learning automata,”
IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-
15, no. 3, pp. 360–375, 1985. 16
[86] J. de Lope, D. Maravall, and Y. Quinonez, “Response threshold
models and stochastic learning automata for self-coordination
of heterogeneous multi-task distribution in multi-robot systems ,”
Robotics and Autonomous Systems, vol. 61, no. 7, pp. 714 – 720,
2013, collective and Social Autonomous Robots. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S092188901200111X 16
[87] R. S. Sutton and A. G. Barto, Reinforcement Learning : An Introduction.
MIT Press, Cambridge, MA , 1998. 21
[88] L. P. Kaelbing, M. L. Littman, and A. W. Moore, “Reinforcement Learning
: A survey,” Journal on Artificial Intelligence Research, 1996. 22
[89] T. Joshi, D. Ahuja, D. Singh, and D. Agrawal, “Sara: Stochastic automata
rate adaptation for ieee 802.11 networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 19, no. 11, pp. 1579–1590, 2008. 22
[90] Y. Xu, J. Wang, Q. Wu, A. Anpalagan, and Y.-D. Yao, “Opportunistic
Spectrum Access in Unknown Dynamic Environment: A Game-Theoretic
Stochastic Learning Solution,” IEEE Transactions on Acoustics Speech and
Signal ProcessingWireless Communications, vol. 11, no. 4, pp. 1380–1391,
2012. 22
[91] G. I. Papadimitriou, “A new approach to the design of reinforcement
schemes for learning automata: stochastic estimator learning algorithms,”
IEEE Transactions on Knowledge and Data Engineering, vol. 6, no. 4, pp.
649–654, August 1994. 24
[92] J. Jacod and A. N. Shiryaev, Limit theorems for stochastic processes.
Springer, 1987. 29
[93] B. Oommen and J. Lanctot, “Discretized pursuit learning automata,” IEEE
Transactions on Systems, Man and Cybernetics, vol. 20, no. 4, pp. 931–938,
1990. 29
[94] 3GPP TR 36.814, “Further Advancements for E-UTRA: Physical Layer
Aspects,” Technical Specification Group Radio Access Network, June 2009.
44, 92
[95] R. Jain, D. Chiu, and W. Hawe, “A Quantitative Measure Of Fairness And
Discrimination For Resource Allocation In Shared Computer Systems,”
DEC Research Report TR-301, Tech. Rep., 1984. 51
96] Cisco, “Cisco VNI Global Mobile Data Traffic Forcast, 2012-2017,”
available at www.cisco.com, 2013. [Online]. Available: www.cisco.com 57
[97] L. Lindbom, R. Love, S. Krishnamurthy, C. Yao, N. Miki, and V. Chandrasekhar,
“Enhanced Inter-cell Interference Coordination for Heterogeneous
Networks in LTE-Advanced: A Survey,” CoRR abs/1112.1344, 2011.
58
[98] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004. 73, 77
[99] A.Ruszczynski, Nonlinear Optimization. Princeton,NJ, USA: Princeton
University Press, 2006. 77
[100] Y. Xing, C. N. Mathur, M. Haleem, R. Chandramouli, and K. Subbalakshmi,
“Dynamic Spectrum Access with QoS and Interference Temperature
Constraints,” IEEE Transaction on Mobile Computing, vol. 6, no. 4, pp.
423–433, April 2007. 80
[101] S. G. Nash and A. Sofer, “On the complexity of a practical interior-point
method,” SIAM Journal on Optimization, vol. 8, no. 3, pp. 833–849, 1998.
82
[102] 3GPP TR 36.931, “Evolved Universal Terrestrial Radio Access (E-UTRA);
Radio Frequency (RF) requirements for LTE Pico Node B (Release 11),”
April 2010. 84, 92
[103] O. Ozturk and M. Vajapeyam, “Performance of VoLTE and data traffic
in LTE heterogeneous networks,” in 2013 IEEE Global Communications
Conference (GLOBECOM), Dec 2013, pp. 1595–1601. 104

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文