跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/07/29 10:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂永鈞
研究生(外文):Yung-Chun Lu
論文名稱:藉由國小五年級學生學習程式設計探究運算思維能力在 Bebras 測驗上的表現
論文名稱(外文):Exploration of computational thinking expressed on Bebras performance with studies on K5 students learning programming
指導教授:鄭士康
口試委員:李忠謀林育慈
口試日期:2015-07-13
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:67
中文關鍵詞:程式教育運算思維能力Bebras
外文關鍵詞:programmingcomputational thinkingBebras
相關次數:
  • 被引用被引用:13
  • 點閱點閱:1804
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:7
本論文嘗試以高年級小學生在 Bebras 測驗上的進步,證實學習程式設計可以 提高學生運算思維能力 。Bebras 是一個專注提升學生在資訊科學興趣的國際組織, 他們設計有趣且情境式的試題來向學生介紹資訊科學的基本概念。我們專注在探 索計算型思考能力中與程式設計相關的四種基本概念,分別為『Procedure』, 『Variable』,『Condition』,和『Loop』。我們將比較學生在兩種不同的程式語言學 習下對計算型思考的學習成果。這兩種程式語言分別為 Blockly 和 Python,它們分 別使用兩種不同形態的程式語言。

Blockly 是一種圖形導向的程式語言,這類型語言使用積木形式的程式區塊建 構起可運作的程式且學習上並不俱有傳統程式語言文法上的障礙,這使得學習障 礙大幅的降低並且使得學習者可以更加專注在程式的邏輯堆疊。

Python 是一種文字導向的程式語言,這類型語言使用文字形式來建構可運作 的程式並且都俱有嚴謹性高的文法要求,造成初期的學習障礙相較於圖形導向的 程式語言高出許多。

This thesis is trying to use Bebras [32] to explore and evaluate students’ computational thinking from a point of view of learning programming. We are focusing on exploring the relationships between CT and four basic concepts of programming. The four concepts are “Procedure”, “Variable”, “Condition” and “Loop”. Bebras is an international initiative whose goal to promote informatics among pupils of all ages by designing interesting and attractive tasks. Those tasks are highly related to informatics, computer science or computer literacy. We will measure the learning effect on CT by learning through two completely different programming languages, Blockly and Python.

“Blockly” uses blocks that link together to make writing code easier because it greatly decreases the barrier of syntax of programming. So that beginners can spend more time focusing on the logical flow of program.

“Python” uses sequences of text including words, numbers and punctuation to write code and it needs more formal syntax to describe the possible combinations that form a syntactically correct program. The barrier of learning syntax may easily cause beginners to fail their classes.

中文摘要 i
ABSTRACT ii
CONTENTS iii
LIST OF FIGURES v
LIST OF TABLES viii
Chapter 1 Introduction 1
1.1 Motivation and Objectives 1
1.2 Literature Survey 2
1.3 Contributions 4
1.4 Chapter Outline 4
Chapter 2 Background and Related Work 6
2.1 Computational Thinking 6
2.2 Programming Environments 7
2.2.1 Block-based Programming Language 7
2.2.2 Text-based Programming Language 8
Chapter 3 Research Design 10
3.1 Materials & apparatus 10
3.2 Materials & apparatus 11
3.2.1 Course in Block-based Class 11
3.2.2 Course in Text-based Class 16
3.3 Bebras Tasks 20
3.3.1 Selection 20
3.3.2 Validity 23
3.3.3 Reliability 24
Chapter 4 Results and Analysis 26
4.1 Difference of students’ ability before training 26
4.2 Result of learning computational thinking 28
4.2.1 Correlation of programming and factors of computational thinking 28
4.2.2 Improvement of computational thinking 33
4.2.3 Comparison of computational thinking on both classes 37
Chapter 5 Discussion 38
5.1 Questions to be answered 38
5.1.1 Correlation between CT and programming 38
5.1.2 Difference of students’ CT after learning programming concepts 41
5.2 Observations 42
5.2.1 Summary of the challenges students have during training 42
5.2.2 Difference of class atmosphere between two classes 45
Chapter 6 Conclusion 46
APPENDIX: Bebras Tasks 47
REFERENCES 64


[1]K. Brennan and M. Resnick, “New frameworks for studying and assessing the development of computational thinking,” in Proceedings of the 2012 annual meeting of the American Educational Research Association, Vancouver, Canada, 2012, pp. 1–25.

[2]J. M. Wing, “Computational Thinking,” Commun. ACM, vol. 49, no. 3, p. 33, 2006.

[3]M. Guzdial, “Education Paving the way for computational thinking,” in Communications of the ACM, 2008, vol. 51, no. 8, p. 25.

[4]J. J. Lu and G. H. L. Fletcher, “Thinking about computational thinking,” ACM SIGCSE Bulletin, vol. 41, no. 1. p. 260, 2009.

[5]National Research Council, “Report of a Workshop of Pedagogical Aspects of Computational Thinking,” 2010.

[6]V. Dagiene and G. Futschek, “Bebras international contest on informatics and computer literacy: Criteria for good tasks,” Informatics Education-Supporting Computational Thinking. pp. 19–30, 2008.

[7]S. Papert, Mindstorms: Children, computers, and powerful ideas. 1980.

[8]Johnson, R. Arnold, and D. W. Wichern, Applied multivariate statistical analysis. 2012.

[9]E. Soloway, “Learning to program = learning to construct mechanisms and explanations,” Commun. ACM, vol. 29, no. 9, pp. 850–858, 1986.

[10]M.-H. Chiu, “Algorithmic Problem Solving and Conceptual Understanding of Chemistry by Students at a Local High School in Taiwan,” in Proceedings of the National Science Council, Republic of China, Part D: Mathematics, Science and Technology Education, 2001, vol. 11, no. 1, pp. 20–38.

[11]R. E. Mayer, J. L. Dyck, and W. Vilberg, “Learning to program and learning to think: what’s the connection?,” in Communications of the ACM, 1986, vol. 29, no. 7, pp. 605–610.

[12]J. C. Hayton, D. G. Allen, and V. Scarpello, “Factor Retention Decisions in Exploratory Factor Analysis: a Tutorial on Parallel Analysis,” Organizational Research Methods, vol. 7, no. 2. pp. 191–205, 2004.

[13]D. R. Divgi, “Calculation of the tetrachoric correlation coefficient,” Psychometrika, vol. 44, no. 2, pp. 169–172, 1979.

[14]A. Ruf, A. Mühling, and P. Hubwieser, “Scratch vs. Karel: impact on learning outcomes and motivation,” in Proceedings of the 9th Workshop in Primary and Secondary Computing Education. ACM, 2014, pp. 50–59.

[15]V. Barr and C. Stephenson, “Bringing Computational Thinking to K-12: What is Involved and What is the Role of the Computer Science Education Community ?,” ACM Inroads, vol. 2, no. 1, pp. 48–54, 2011.

[16]B. D. Barr, J. Harrison, and L. Conery, “Computational Thinking : A Digital Age Skill for Everyone,” in Learning & Leading with Technology, 2011, vol. 38, no. 6, pp. 20–23.

[17]J. Maloney, K. Peppler, Y. B. Kafai, M. Resnick, and N. Rusk, “Programming by Choice: Urban Youth Learning Programming with Scratch,” ACM SIGCSE Bulletin, vol. 40, no. 1. pp. 367–371, 2008.

[18]C. Wilson, L. A. Sudol, C. Stephenson, and M. Stehlik, “Running on empty: The Failure to Teach K-12 Computer Science in the Digital Age,” 2010.

[19]A. Begel, “LogoBlocks: A graphical programming language for interacting with the world.” 1996.

[20]S. Cooper, W. Dann, and R. Pausch, “Alice: a 3-D tool for introductory programming concepts,” J. Comput. Sci. Coll., vol. 15, no. 5, pp. 107–116, 2000.

[21]J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The Scratch Programming Language and Environment,” in ACM Transactions on Computing Education (TOCE), 2010, vol. 10, no. 4, p. 16.

[22]P. R. Pintrich and E. V. de Groot, “Motivational and self-regulated learning components of classroom academic performance.,” Journal of Educational Psychology, vol. 82, no. 1. p. 33, 1990.

[23]A. Yadav, N. Zhou, C. Mayfield, S. Hambrusch, and J. T. Korb, “Introducing computational thinking in education courses,” in Proceedings of the 42nd ACM technical symposium on Computer science education. ACM, 2011.

[24]A. Basawapatna, K. H. Koh, A. Repenning, D. C. Webb, and K. S. Marshall, “Recognizing computational thinking patterns,” in Proceedings of the 42nd ACM technical symposium on Computer science education. ACM, 2011.

[25]J. Denner, B. Coulter, W. Allan, and J. M. L. Werner, “Computational thinking for youth in practice,” ACM Inroads, vol. 2, no. 1. pp. 32–37, 2011.

[26]L. Perkovi, A. Settle, S. Hwang, and J. Jones, “A Framework for Computational Thinking across the Curriculum,” in Proceedings of the fifteenth annual conference on Innovation and technology in computer science education (ITiCS ’10), 2010, pp. 123–127.

[27]S. Hambrusch, C. Hoffmann, and J. Korb, “A multidisciplinary approach towards computational thinking for science majors,” ACM SIGCSE Bulletin, vol. 41, no. 1. pp. 183–187, 2009.

[28]H. Qin, “Teaching computational thinking through bioinformatics to biology students,” ACM SIGCSE Bulletin, vol. 41, no. 1. pp. 188–191, 2009.

[29]K. H. Koh, A. Basawapatna, V. Bennett, and A. Repenning, “Towards the Automatic Recognition of Computational Thinking for Adaptive Visual Language Learning,” in Visual Languages and Human-Centric Computing (VL/HCC), 2010.

[30]L. Werner, J. Denner, and S. Campe, “The Fairy Performance Assessment : Measuring Computational Thinking in Middle School,” in Proceedings of the 43rd ACM technical symposium on Computer Science Education, 2012.

[31]R. Morelli, T. De Lanerolle, and P. Lake, “Can android app inventor bring computational thinking to k-12,” in Proceedings of the 42nd ACM technical symposium on Computer Science Education, 2011.

[32]Bebras - International Contest on Informatics and Computer Literacy, ''Bebras國際運算思維能力測驗'', 2013. [Online]. Available: http://bebras.csie.ntnu.edu.tw/. [Accessed: 23- Jun- 2015].

[33]J. J. Clement, E. Soloway, and J. Lochhead, “Does computer programming enhance problem solving ability?”, 1982.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top