跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 06:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳添輝
研究生(外文):Tien-Hui Chen
論文名稱:具有緊密自由距離範圍之低密度奇偶檢查迴旋碼
論文名稱(外文):On LDPC Convolutional Codes with Tight Free Distance Bound
指導教授:林茂昭
口試委員:鐘嘉德蘇育德蘇賜麟楊谷章趙啟超陸曉峯邱茂清翁詠祿
口試日期:2015-07-15
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:97
中文關鍵詞:低密度奇偶碼低密度奇偶檢查碼籬柵碼原模圖疊 帶解碼演算法
外文關鍵詞:LDPC-CCLDPCProtographTrellis codeiterative decoding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:72
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由一具有短限制長度的迴旋編碼器串接額外處理器可建構出一具有長限制長度的籬柵碼.在西元1993年Hellstern提出一種具有延遲處理器及信號點對應器的籬柵碼架構,此編碼架構可建構出具有大自由距離的籬柵碼和獲得緊密的自由距離的界限.
在此篇論文裡面我們採用具有大自由距離的籬柵碼的架構建構出其低密度奇偶檢查迴旋碼(LDPC-CCs).其中最主要的問題為所建構出之奇偶檢查矩陣,在解碼時的泰納圖中出現許多四個週期的循環.因此,我們提出兩種建構方式來解決四個週期的循環問題.第一種方式,我們利用增加額外的位元消除四個週期的循環問題.第二種方式,我們沿用原模圖(Protograph)的概念延展出更大的奇偶檢查矩陣,因而消除四個週期循環的問題.兩種方式都可採用並行解碼方式(Pipeline decoding)作為解碼器,模擬結果顯示出提出的方法比具有四個週期的循環在錯誤解碼的能力上有明顯的改進.
我們也提出另外兩種疊帶解碼演算法為了幫助增加額外位元的架構方式執行更有效的解碼.第一種疊帶解碼演算法,其疊帶的迴圈是介於具有短限制長度的迴旋編碼器及信號對應器之間;第二種疊帶解碼演算法,是一種二個步驟的疊帶演算法方式,第一個步驟我們採用第一種提出的疊帶解碼演算法,先求出額外位元的軟式資料然後再與接收訊號一起送至並行解碼器做第二個步驟的解碼動作.


A trellis code, which is constructed by using the encoder of a basic convolutional code with a short constraint length followed by a delay processor and a signal mapper, is equivalent to a trellis code with a large constraint length.
In addition, for such a code, tight lower and upper bounds on the free distance can be obtained. In this thesis, we use this code structure to construct low density parity check convolutional codes (LDPC-CCs). The undesired 4-cycles that exist in the Tanner graph for the proposed LDPC convolutional codes are as a result of the inherited properties of the code structure. To remove these undesired cycles, two unique schemes are employed. For the first scheme, denoted as auxiliary-nodes construction (ANC), we employ additional auxiliary nodes to remove 4-cycles. For the second, denoted as the protograph based construction (PGC), we use the concept of
protograph to obtain a derived code which extends the size of parity-check matrix so as to increase the girth. Both schemes can be efficiently decoded by the iterative message-passing algorithm which is also called the pipeline decoder. Simulation results show that the newly constructed codes can obtain satisfactory error performances as compared to code that has 4-cycles.
We also propose two additional iterative decoding algorithms, denoted as IDEC 1 and IDEC 2 respectively for the ANC construction. For IDEC 1, a loop of the iteration between the trellis of the basic convolutional code and the signal mapper is employed. For IDEC 2, a two-stage decoding is employed, where in the first stage IDEC 1 is implemented, and the derived soft information for auxiliary nodes is sent to the pipeline decoder of the ANC to enable the second-stage decoding to be performed.

1. Introduction.......................1
2. Preliminary.........................5
2.1 Trellis Codes with a Delay Processor and a Signal Mapper.....6
2.2 LDPCConvolutionalCodes .................... 9
2.2.1 Decoding Algorithm for LDPC Convolutional Codes . . . 12
2.3 Protograph-basedLDPCCodes .................. 14
3 New Constructions for the LDPC Convolutional Codes 17
3.1 Introduction............................. 17
3.2 The Polynomial Parity-Check Matrix based on TCDPSM . . . . 19
3.2.1 FreeDistanceBounds.................... 21 3.2.2 ShortCyclesPath...................... 23
3.3 A Construction for Removing Short Cycles based on Auxiliary Nodes(ANC) ............................ 26
3.3.1 Performance for LDPC Convolutional Code based on
AuxiliaryNodesConstruction(ANC) . . . . . . . . . . . 27
3.4 The General Form for the Parity Check Matrix based on Aux- iliaryNodesConstruction(ANC) ................. 30
3.5 A Construction for Removing Short Cycles based on Protograph- basedConstruction(PGC)..................... 37
3.6 A free distance bound for the PGC Construction. . . . . . . . . 49
3.7 Remarks............................... 51
4 Iterative Decoding Algorithms between the Trellis of the Basic Convolutional Code and the Signal Mapper 52
4.1 Introduction............................. 52
4.2 Iterative Decoding Algorithm 1 (IDEC 1) for LDPC Convolu-
tional Codes decoded using an ANC Construction . . . . . . . . 55
4.2.1 PerformanceEvaluation .................. 61
4.3 Iterative Decoding Algorithm 2 (IDEC 2) for LDPC Convolu-
tionalCodesbasedonANCconstruction . . . . . . . . . . . . . 67
4.4 EXIT Chart Analysis for the Proposed LDPC-CCs using Itera-
tiveDecodingAlgorithm1(IDEC1) ............... 73
4.4.1 An Overview of the Extrinsic Information Transfer Char-
acteristics .......................... 75
4.4.2 TransferCharacteristicsI(LE;X)forConvolutionalCodes
plus a Delay Processor and the Signal Mapper . . . . . 79
4.4.3 Extrinsic Information Transfer Chart . . . . . . . . . .81
4.4.4 The EXIT Chart for the Convolutional Code (dfree=6)
plusa a Delay Processor vs. the Signal Mapper . . . . .. 84
4.4.5 The EXIT Chart for the Convolutional Code (dfree=10)
plus a Delay Processor vs. the Signal Mapper . . . . . . 86 4.5 Remarks............................... 89
5 Conclusion and Future Works 92



[1] R. G. Gallager, “ Low-density parity-check codes,” IEEE Trans. Inf The- ory, vol. IT-8 21-28, Jan. 1962.
[2] D. J. C. Mackay and R. M. Neal, “ Near shannon limit performance of low density parity check codes,” Electron. Letter., vol. 32, pp. 1645-1646, Aug. 1996.
[3] R. M. Tanner, “ A recursive approach to low complexity codes,” IEEE Trans. Inf. Theory, IT-27, pp. 533-547, Sept. 1981.
[4] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “ Factor graphs and the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, pp. 498-519, Feb. 2001.
[5] D. Sridhara, T. Fuja, and R. M. Tanner, “ Low density parity check codes from permutation matrices,” in Proc. Conf. Information. Sciences and Systems, Baltimore, MD, Mar. 2001, p. 142.
[6] R. Smarandache and P. O. Vontobel, “ On regular quasi-cyclic LDPC codes from binomials,” in Proc. IEEE Inf. Symp. Information Theory, Chicago, IL, Jun. 2004, p. 277.
[7] A. Sridharan, D. J. Costello, Jr., D. Sridhara, T. E. Fuja, and R. M. Tanner, “ A construction for low density parity check convolutional codes based on quasi-cyclic block codes,” in Proc. IEEE Int. Symp. Inf. Theory, p. 481, Dec. 2002.
[8] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello, “ LDPC block and convolutional codes based on circulant matrice,” IEEE Trans. Inf. Theory, vol. 52, no 12, pp. 2966-2984, Dec. 2004.
[9] A. J. Felstrom and K. S. Zigangirov, “ Time-varying periodic convo- lutional codes with low-density parity-check matrix,” IEEE Trans. Inf. Theory, vol. 45, pp. 2181-2191, Sep. 1999.
[10] D. J. Costello, Jr., A. E. Pusane, S. Bates, and K. Sh. Zigangirov, “ A Comparison Between LDPC Block and Convolutional Codes,” in Proc. Information Theory and Applications Workshop, Feb. 2006.
[11] G. Hellstern, “ Coded modulation with feedback decoding trellis codes,” in Proc. IEEE ICC’93, pp. 1071-1075, May. 1993.
[12] G. Ungerboeck, “ Channel coding with multilevel/phase signals,” IEEE Trans. Inform. Theory, vol. IT-28, no 1, pp. 55-67, Jan. 1982.
[13] J. Y.Wang and M. C. Lin, “ On constructing trellis codes with large free distances and low decoding complexities,” IEEE Trans. Commun, vol. 45, no 12, pp. 1017-1020, Sept. 1997.
[14] M. C. Lin, Y.L Ueng and J. Y.Wang, “ Two Trellis Coding Schemes for Large Free Distances,” IEEE Trans. Commun, vol. 48, no 8, pp. 1286- 1296, Aug. 2000.
[15] Y.L Ueng, C.J Yeh and M. C. Lin, “ On Trellis Codes With a Delay Processor and a Signal Mapper,” IEEE Trans. Commun, vol. 50, no 12, pp. 1906-1917, Dec. 2002.
[16] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “ Soft-output de- coding algorithms for continuous decoding of parallel concatenated con- volutional codes,” in Proc. IEEE ICC’96, pp. 23-27, June. 1996.
[17] J. Thorpe “ Low-density parity-check (LDPC) codes constructed from protographs,” JPL INP, Tech. Rep., Aug. 2003.
[18] C. Berrou and A. Glavieux, “ Near optimun error correcting coding and decoding : Turbo-codes,” IEEE Trans. Commun., vol. 44, no. 10, pp. 1261-1271, Nov. 1996.
[19] S. ten Brink, Convergence behavior of iteratively decoded parallel con- catenated codes, IEEE Trans. On Comm., vol. 49, Oct 2001.
[20] D. J. C. MacKay and M. C. Davey, “ Evaluation of Gallager codes for short block length and high rate applictions,” in IMA Volumes in Mathematics and its Applications, vol. 123, Chap. 5, pp. 113-130, 2001.
[21] M. Cedervall and R. Johannesson, “ A fast algorithm for computing dis- tance spectrum of convolutional codes,” IEEE Trans. Inform. Theory, vol. 35, pp. 1146-1159, Nov. 1989.
[22] Toshiyuki SHOHON, Yuuichi OGAWA, Haruo OGIWARA, “ Sum- Product decoding of convolutional codes,” Signal Design and its Applica- tions in Communications, 2009. IWSDA ’09. Fourth International Work- shop on, pp. 64-67, Oct. 2009.
[23] Tien-Hui Chen, Kuan-Chen Chen, Mao-Chao Lin, “ A Construction of LDPC Convolutional Codes with Close Distance Bounds,” International Symposium on Information Theory and Its Applications, Melbourne, Oc- tober 24-October 27, 2014.
[24] P. Robertson, E. Villebrun, and P. Hoeher, ”A comparison of a optimal and suboptimal MAP decoding algorithms operating in the log domain,” in Proc. ICC’ 95, pp. 1009-1013.
[25] X. Li and J. A. Ritcey, ”Bit-interleaved coded modulation with iterative decoding,” in Proc. IEEE ICC99, June 1999, pp. 858862.
[26] S. ten Brink, J. Speidel, and R. H. Yan, ”Iterative demapping and de- coding for multilevel modulations,” in Proc. IEEE GLOBECOM98, Nov. 1998, pp. 579-584.
[27] T. M. Cover and J. A. Thomas, Elements of Information Theory. York: Wiley, 1991.
[28] R. W. Hamming, Coding and Information Theory. Englewood Cliffs, NJ: Prentice-Hall, 1986.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文