跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/21 02:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄒耀東
研究生(外文):Yao-Tung Tsou
論文名稱:安全、私密儲存且有效率的無線感測網路系統
論文名稱(外文):Secure, Privacy-Preserving, and Efficient Wireless Sensor Networks System
指導教授:郭斯彥郭斯彥引用關係
口試委員:黃彥男呂俊賢袁世一雷欽隆鍾偉和顏嗣鈞黃士嘉陳英一
口試日期:2015-06-18
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:89
中文關鍵詞:無線感測網路資料私密性網路安全資料完整性範圍詢問Top-k詢問阻斷服務攻擊
外文關鍵詞:Wireless Sensor NetworksData PrivacyNetwork SecurityData CorrectnessRange QueryTop-k QeuryDoS Attacks
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於感測節點本身資源受限且伴隨著不同屬性及安全層級的隨意佈建,使得確保感測網路中資料通訊安全與存取控制變得格外重要;因此,在本論文中我們的目標是發展一安全、私密儲存且有效率的無線感測網路系統來解決現今未被妥善處理的安全性與效率性的議題。
首先,我們提出一安全機制,叫做MoteSec-Aware,用來解決安全網路協定與資料存取控制議題;MoteSec-Aware主要透過虛擬計數管理者來控制不重覆增加的計數器,並運用此計數器來偵測重送與壅塞攻擊;此外,當使用者想要存取儲存在儲存節點記憶體內的資料,MoteSec-Aware可提供一有效率的鍵值配對方法來驗證使用者的權限。
接下來考慮到存放在儲存節點記憶體內的資料安全,我們將資料加密後儲存在記憶體內,並針對加密資料提出一安全的功能化top-k詢問機制,叫做PCTopk;此安全詢問機制可在兩層感測網路架構下進行多維度資料詢問,並保留資料私密性與完整性。PCTopk運用順序保留對稱加密機制來加密資料,並建構一階層驗證樹,只允許儲存節點可以在加密的環境下有系統地進行資料處理,並使得詢問者可以有效率地驗證詢問結果的完整性。
為了豐富系統的使用性,針對在兩階層感測網路架構下,我們進一步提出了一有效率且安全的機制,叫做SER,來提供匿名範圍詢問;SER可以抵抗多種知名攻擊並允許可以在資料加密的情況下進行資料處理。SER主要可以預防敵人得到存放在儲存節點記憶體內的資料、當被俘虜的儲存節點做出不正常的行為時偵測出他們、在不知道詢問者的身分的情況下驗證他們的權限。此外,我們以限制函數為基礎的驗證方法並被配合以TinyECC為基礎的環狀簽章來建構出環狀過濾驗證機制,使得詢問者可以隱藏他們的身分並允許儲存節點不受到阻斷服務攻擊。


Ensuring the security of communication and access control in Wireless Sensor Networks (WSNs) is of paramount importance due to the resource-restricted sensor nodes and due to nodes ubiquitous and pervasive deployment with varying attributes and degrees of security required. In this thesis, our goal will be to develop a “Secure, Privacy-Preserving, and Efficient Wireless Sensor Networks System” by addressing some problems not well solved in the literature.
We first propose a secure mechanism, called MoteSec-Aware, to address the security issues of secure network protocol and data access control. MoteSec-Aware aims to detect replay and jamming attacks by using a virtual counter manager with a synchronized incremental counter. It also provides an efficient solution by using Key-Lock Matching method to authenticate various rights for a user who wants to access the data stored in storage nodes’ memories. In the sequence, with the consideration of the data being stored in terms of the ciphertext format in storage nodes’ memories for preserving data privacy, we develop a query model, called PCTopk, for functional top-k query with a combination of multiple conditions/dimensions in two-tiered sensor networks to simultaneously preserve data privacy and correctness (i.e., authenticity and integrity). PCTopk constructs a layered authentication tree, cooperated with an order-preserving symmetric encryption technique, for only permitting storage nodes to systematically process inquired data over encryption domain and enabling querists to efficiently verify the authentic and complete query results. To enrich the utilization of our system, we also provide an efficient and secure mechanism, called SER, for anonymous range query in two-tiered sensor networks with the functionality of resisting several known attacks while still providing required operations directly operates on encrypted data for requested queries. SER mainly prevents adversaries from gaining the information processed by or stored in storage nodes’ memories, detects the compromised storage nodes when they misbehave, and verifies the querists’ privileges without knowing their identities when they query a storage node. In addition, we modified Constrained Function-based Authentication (CFA) and incorporated it in the TinyECC-based ring signature, named RFV, to enable querists to hide their identities and enable storage nodes to resist DoS attacks.


1 Introduction 1
1.1 The First Security Challenge: Secure Network Protocol and Data Access
Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Second Security Challenge: Data Privacy and Correctness Preservation,
and Anonymous Access Control . . . . . . . . . . . . . . . . . . . . 2
2 MoteSec-Aware: A Secure Network-Layer Mechanism for WSNs 6
2.1 Overview and Contributions of This Method . . . . . . . . . . . . . . . . . 6
2.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Network Topology for Multilevel Access . . . . . . . . . . . . . . 7
2.2.2 Attack Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Key Distribution and Update . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Comparisons with State-of-the-Art Methods . . . . . . . . . . . . . 9
2.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Security Against DoS via CFA with AES in OCB Mode . . . . . . 11
2.3.2 Replay and Jamming Detection with Synchronized Incremental Counter
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Memory Data Access Control Policy (MDACP) . . . . . . . . . . . 15
2.4 Pairwise Timer Synchronization: Evaluation of Maximum Counter Synchronization
Error (MCSE) . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.1 Replay and Jamming Detection . . . . . . . . . . . . . . . . . . . 23
2.5.2 Resilience Against Node Capture Attack . . . . . . . . . . . . . . 23
2.5.3 Evaluation of the Minimum Time Required to Trigger Pairwise
Counter Synchronization . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.4 IV Synchronization for Semantic Security . . . . . . . . . . . . . . 25
2.5.5 Data Access Control . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.6 Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3 PCTopk: an Efficient and Secure Data Retrieval Mechanism for Functional
Top-k Query 32
3.1 Overview and Contributions of This Method . . . . . . . . . . . . . . . . . 32
3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1 Network Roles Definition . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Attack Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.4 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 The Manufacture of a Layered Authentication (LA) Tree . . . . . . 38
3.3.2 Manipulations on SNs, STNs, and QTs . . . . . . . . . . . . . . . 42
3.4 System Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.1 Hardware Module and Experimental Setup . . . . . . . . . . . . . 50
3.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.3 Simulated Results . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4 SER: an Efficient and Secure Data Retrieval Scheme for Anonymous Range
Query 55
4.1 Overview and Contributions of This Method . . . . . . . . . . . . . . . . . 55
4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.1 Network Roles Definition . . . . . . . . . . . . . . . . . . . . . . 57
4.2.2 Attack Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.1 Elliptic Curve Cryptography (ECC) . . . . . . . . . . . . . . . . . 60
4.3.2 Constrained Function-based Authentication (CFA) . . . . . . . . . 60
4.4 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.1 Order Encryption Mechanism (OEM) for preserving data privacy . 61
4.4.2 RFV for AAC and DoS Resistance . . . . . . . . . . . . . . . . . . 62
4.4.3 Operations on sensing nodes, querists, and storage nodes . . . . . . 65
4.5 Data Privacy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.6 System Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.7 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.7.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.7.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.8 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5 Conclusion 82

[1] H. Burton, Bloom: Space/time Trade-offs in Hash Coding with Allowable Errors, Communications of the ACM, vol. 13, no. 7, pp. 422-426, 1970.
[2] A. Boldyreva and N. Chenette and Y. Lee and A. O’Neill, Order-Preserving Symmetric Encryption, Advances in Cryptology EUROCRYPT, vol. 5479, pp. 224-241, 2009.
[3] C. Blundo and A. D. Santis and A. Herzberg and S. Kutten and U. Vaccaro and M. Yung, Perfectly-Secure Key Distribution for Dynamic Conferences, Proc. International Cryptology Conference, pp. 471-486, Santa Barbara, CA, 1993.
[4] S. Blackshear and R. Verma, R-LEAP+: Randomizing LEAP+ Key Distribution to Resist Replay and Jamming Attacks, IN: SAC. ACM Press, pp. 1985-1992, New York, 2010.
[5] J. Bu and S. Zhu and S. Chan and C. Chen, Distributed Access Control with Privacy Support in Wireless Sensor Networks, IEEE Trans. On Wireless Communications, vol. 10, no. 10, pp. 3472-3481, October 2011.
[6] T. Chen and L. Ge and X. Wang and J. Cai, TinyStream: a Lightweight and Novel Stream Cipher Scheme forWireless Sensor Networks, Proc. International Conference on Computational Intelligence and Security, pp. 528-532, 2010.
[7] F. Chen and A. X. Liu, SafeQ: Secure and Efficient Query Processing in Sensor Networks, Proc. IEEE International Conference on Computer Communications, pp. 1-9, San Diego, CA, 2010.
[8] C. Castelluccia and E. Mykletun and G. Tsudik, Efficient Aggregation of Encrypted Data in Wireless Sensor Networks, The Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, pp. 109-117, San Diego, CA, 2005.
[9] L. Casado and P. Tsigas, Contikisec: A Secure Network Layer for Wireless Sensor Networks under the Contiki Operating System, Proc. of the 14th Nordic Conference on Secure IT Systems, pp. 133-147, Oslo, Norway, 2009.
[10] M. Das, Two-factor User Authentication in Wireless Sensor Networks, IEEE Trans. on Wireless Communications, vol. 8, no. 3, pp. 1086-1090, March 2009.
[11] D. Eastlake and P. Jones, Us Secure Hash Algorithm 1 (sha1), RFC 3174, 2001.
[12] J. Elson and L. Girod and D. Estrin, Fine-grained Network Time Synchronization Using Reference Broadcasts, Proc. of the 5th symposium on Operating systems design and implementation, vol. 36, no. SI, pp. 147-163, Boston, MA, 2002.
[13] J. Fraden, Handbook of Modern Sensors. Physics, Designs and Applications, American Institute of Physics, Woodbury, New York, USA, 1997.
[14] S. Ganeriwal and S. Capkun and M.-B. Srivastava, Secure Time Synchronization in Sensor Networks, ACM Trans. on Information and Systems Security, vol. 11, no. 4, pp. 1-35, 2006.
[15] S. Ganeriwal and R. Kumar and M.-B. Srivastava, Timing-sync Protocol for Sensor Networks, ACM Proc. of the 1st International Conference on Networked Sensor Systems, pp. 138-149, Los Angeles, California, 2003.
[16] S. Goldwasser and S. Micali, Probabilistic encryption, Journal of Computer and System Sciences, vol. 28, pp. 270-299, 1984.
[17] D. He and J. Bu and S. Zhu and S. Chan and C. Chen, Distributed Access Control with Privacy Support inWireless Sensor Networks, IEEE Trans. on Wireless Communications, vol. 10, no. 10, December 2011.
[18] H. Hacigumus and B.-R. Iyer and C. Li and S. Mehrotra, Executing SQL over Encrypted Data in the Database Service Provider Model, Proc. of the 2002 ACM SIGMOD international conference on Management of data, pp. 216-227, Madison, Wisconsin, 2002.
[19] D. He and N. Kumar and M. Khan and J. Lee, Anonymous Two-factor Authentication for Consumer Roaming Service in Global Mobility Networks, IEEE Trans. on Consumer Electronics, vol. 59, no. 4, pp. 811-817, November 2013.
[20] B. Hore and S. Mehrotra and G. Tsudik, A Privacy-Preserving Index for Range Queries, Proc. of the Thirtieth international conference on Very large data bases, pp. 720-731, Morgan Kaufmann, San Francisco, 2004.
[21] J.-J. Hwang and B.-M. Shao and P.-C. Wang, A New Access Control Method Using Prime Factorization, The Computer, vol. 35, no. 1, pp. 16-20, 1992.
[22] B. Jiajun and Y. Mingjian and H. Daojing and X. Feng and C. Chun, SEF: a Secure, Efficient, and Flexible Range Query Scheme in Two-Tiered Sensor Networks, International Journal of Distributed Sensor Networks, vol. 2011, pp. 1-12, 2011.
[23] H. Jiang and J. Cheng and D. Wang and C. Wang and G. Tan, Continuous Multidimensional Top-k Query Processing in Sensor Networks, Proc. of IEEE International Conference on Computer Communications, pp. 793-801, Shanghai , April 2011.
[24] D. Jinwala and D. Patel and K.-S. Dasgupta, Optimizing the Block Cipher and Modes of Operations Overhead at the Link Layer Security Framework in theWireless Sensor Networks, ACM Proc. of the 4th International Conference on Information Systems Security, pp. 258-272, Hyderabad, India, 2008.
[25] D. Jinwala and D. Patel and K. Dasgupta, FlexiSec: A Configurable Link Layer Security Architecture for Wireless Sensor Networks, Information Assurance and Security, vol. 4, no. 6, pp. 582-603, 2009.
[26] P. Kumar and A. Gurtov and M. Ylianttila and S.-G. Lee and H.-J. Lee, A Strong Authentication Scheme with User Privacy for Wireless Sensor Networks, ETRI Journal, vol. 35, no. 5, October 2013.
[27] S. Kun and L. An and N. Peng and M. Douglas, Securing Network Access inWireless Sensor Networks, ACM Proc.of the 2th International Conference onWireless Network Security, pp. 261-268, Zurich, Switzerland, 2009.
[28] J. Katz and Y. Lindell, Introduction to Modern Cryptography: Principles and Protocols, Chapman & Hall/CRC, 2007.
[29] C. Karlof and N. Sastry and D. Wagner, TinySec: a Link Layer Security Architecture for Wireless Sensor Networks, ACM Proc. of the 2nd International Conference on Embedded Networked Sensor Systems, pp. 162-175, Baltimore, Maryland, 2004.
[30] P. Levis and N. Lee and M. Welsh and D. Culler, TOSSIM: Accurate and Scalable Simulation of Entire TinyOS Applications, Proc. of the First ACM Conference on Embedded Networked Sensor Systems, pp. 126-137, Los Angeles, CA, November 2003.
[31] L. Lu and T. He and T. Abdelzaher and J. Stankovic, Design and Comparison of Lightweight Group Management Strategies in EnviroSuite, Proc. of the 1st International Conference on Distributed Computing in Sensor Networks, pp. 155-172, Marina Del Rey, CA, 2005.
[32] P. Levis and N. Lee and M.Welsh and D. Culler, TOSSIM: Accurate and scalable simulation of entire TinyOS applications, ACM Proc. of the 1st International Conference on Embedded Networked Sensor Systems, pp. 126-137, Los Angeles, CA, 2005.
[33] X. Lin and R. Lu and H. Zhu and P.-H. Ho and X. Shen and Z. Cao, ASRPAKE: an Anonymous Secure Routing Protocol with Authenticated Key Exchange for Wireless Ad Hoc Networks, Proc. of IEEE International Conference on Communications, pp. 1247-1253, Glasgow, 2007.
[34] X. Liao and J. Li, Privacy-preserving and Secure Top-k Query in Two-tier Wireless Sensor Network, in Proc. of IEEE Global Communications Conference, pp. 335-341, Anaheim, CA, October 2012.
[35] M. Luk and G. Mezzour and A. Perrig and V. Gligor, Minisec: a Secure Sensor Network Communication Architecture, Proc. of 6th International Symposium on Information Processing in Sensor Networks, pp. 479-488, Cambridge, MA, 2007.
[36] A. Liu and P. Ning, TinyECC: a Configurable Library for Elliptic Curve Cryptograph in Wireless Sensor Networks, Proc. of 7th International Symposium on Information Processing in Sensor Networks, pp. 245-256, St. Louis, MO, 2008.
[37] X. Lin and X. Sun and X. Wang and C. Zhang and P.-H. Ho and X. (S.) Shen, TSVC: Timed Efficient and Secure Vehicular Communications with Privacy Preserving, IEEE Trans. On Wireless Communications, vol. 7, no. 12, December 2008.
[38] W. Lu and A. Varna and M. Wu, Security Analysis for Privacy Preserving Search of Multimedia, Proc. of 17th IEEE International Conference on Image Processing, pp. 2093-2096, Hong Kong, 2010.
[39] Y. Mao and M. Wu, Unicity distance of robust image hashing, IEEE Trans. on Information Forensics and Security, vol. 2, no. 3, pp. 462-467, 2007.
[40] R.-C. Merkle, A Certified Digital Signature, Advances in Cryptology, Lecture Notes in Computer Science, pp. 218-238, Springer, New York, NY, USA, 1989.
[41] H.-B. Mitchell, Multi-Sensor Data Fusion: Sensor Value Normalization, Springer Berlin Heidelberg, pp. 97-112, 2007.
[42] NEPTUNE: http://www.neptune.washington.edu/.
[43] NIST, National Institute of Standards and Technology, Computer Security Division, AES standard, http://csrc.nist.gov/archive/aes/index.html, 2001.
[44] D. Naor and M. Naor and J. Lotspiech, Revocation and Tracing Schemes for Stateless Receivers, Advances in Cryptology, pp. 41-62, 2001.
[45] NOPP, http://www.nopp.org/.
[46] ORION: http://www.oceanleadership.org/programs-andpartnerships/oceanobserving/.
[47] PowerTOSSIM, PowerTOSSIM: Efficient Power Simulation for TinyOS Applications, http://www.eecs.harvard.edu/ shnayder/ptossim/, 2004.
[48] J. Polastre and R. Szewczyk and D. Culler, Telos: Enabling ultra-low power wireless research, IEEE Proc. of the 4th International Conference on Information Processing in Sensor Networks, pp. 364-369, Berkeley, CA, 2005.
[49] A. Perrig and R. Szewczyk and J. Tygar and V. Wen and D. Culler, SPINS: Security Protocols for Sensor Networks, ACM Wireless Networks, vol. 8, no. 5, pp. 521-234, Sep. 2002.
[50] E. Schwartz and D. Brumley and J. McCune, Contractual anonymity, Proc. of the 17th Annual Network & Distributed System Security Symposium, pp. 1-29, San Diego, California, February 2010.
[51] C.-E. Shannon, A Mathematical Theory of Communication, The Bell System Technical Journal, PP. 623-656, October 1984.
[52] P. Sinha, A Memory-Efficient Doubly Linked List, Linux Journal, vol. 2005, no. 129, pp. 1-10, January 2005.
[53] T. Schmid and P. Dutta and M. B. Srivastava, High-Resolution, Low-Power Time Synchronization an Oxymoron No More, Proc. of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks, pp. 151-161, New York, NY, USA, 2010.
[54] B. Sheng and Q. Li, Verifiable Privacy-Preserving Range Query in Two-Tiered Sensor Networks, Proc. of IEEE International Conference on Computer Communications, pp. 457-465, San Diego, CA, 2008.
[55] SmartRF, SmartRF CC2420 Datasheet (rev 1.3), http://www.chipcon.com/files/CC2420 Data Sheet 1 3.pdf, 2005.
[56] L. Shu and M. Hauswirth and Y. Zhang and J. Ma and G. Min and Y. Wang, Cross Layer Optimization for Data Gathering in Wireless Multimedia Sensor Networks within Expected Network Lifetime, Journal of Universal Computer Science, vol. 16, no. 10, pp. 1343-1367, 2010.
[57] K. Sun and P. Ning, and C. Wang, TinySeRSync: Secure and Resilient Time Synchronization in Wireless Sensor Networks, ACM Proc. of the 13th International Conference on Computer and Communications Security, pp. 264-277, Alexandria, VA, 2006.
[58] J. Shi and R. Zhang and Y. Zhang, Secure Range Queries in Tiered Sensor Networks, Proc. of IEEE International Conference on Computer Communications, pp. 945-953, Rio de Janeiro, Brazil, 2009.
[59] J. Shi and R. Zhang and Y. Zhang, A Spatiotemporal Approach for Secure Range Queries in Tiered Sensor Networks, IEEE Trans. On Wireless Communications, vol. 10, no. 1, pp. 264-273, January 2011.
[60] Taking the Pulse of the Planet: EPA’s Remote Sensing Information Gateway. http://www.epa.gov/geoss/.
[61] Y.-T. Tsou and C.-S. Lu and S.-Y. Kuo, MoteSec-Aware: A Practical Secure Mechanism for Wireless Sensor Networks, IEEE Trans. on Wireless Communications, volume 12, number 6, pp. 2817-2829, June 2013.
[62] O. Ugus, Asymmetric Homomorphic Encryption Transformation for Securing Distributed Data Storage in Wireless Sensor Networks, Masters thesis, Technische Universit at Darmstadt - in Cooperation with NEC Europe Ltd., Heidelberg, Darmstadt, 2007.
[63] H.Wang and Q. Li, Distributed User Access Control in Sensor Networks, IEEE International Conference on Distributed Computing in Sensor Systems, pp. 305-320, San Francisco, CA, June 2006.
[64] H. Wang and B. Sheng and Q. Li, Elliptic Curve cryptography Based Access Control in Sensor Networks, International Journal of Security and Networks, vol. 1, no. 3/4, pp. 127-137, December 2006.
[65] H. Wang and S. Sheng and C. Tan and Q. Li, Comparing Symmetric-Key and Public- Key Based Security Schemes in Sensor Networks: A Case Study of User Access Control, Proc. of IEEE 28th International Conference Distributed Computing Systems, pp. 11-18, Beijing, 2008.
[66] Q. Wang and K. Ren and W. Lou and Y. Zhang, Dependable and Secure Sensor Data Storage with Dynamic Integrity Assurance, Proc. of IEEE International Conference on Computer Communications, pp. 954-962, Rio de Janeiro, Brazil, 2009. [67] C.-M. Yu and C.-S. Lu and S.-Y. Kuo, Non-interactive Pairwise Key Establishment for Sensor Networks, IEEE Trans. on Information Forensic and Security, vol. 5, no. 3, pp. 556-569, 2010.
[68] C.-M. Yu and Y.-T. Tsou and C.-S. Lu and S.-Y. Kuo, Practical and Secure Multidimensional Queries in Tiered Sensor Networks, IEEE Trans. on Information Forensics and Security, vol. 6, no. 2, pp. 241-255, June 2011.
[69] C.-M. Yu and Y.-T. Tsou and C.-S. Lu and S.-Y. Kuo, Constrained Function-Based Message Authentication for Sensor Networks, IEEE Trans. on Information Forensic and Security, vol. 6, no. 2, pp. 407-425, 2011.
[70] Y. Yi and R. Li and F. Chen and A.-X. Liu and Y. Lin, A Digital Watermarking Approach to Secure and Precise Range Query Processing in Sensor Networks, Proc. of the 32th Annual IEEE Conference on Computer Communications, pp. 1950-1958, Turin, Italy, April 2013.
[71] S.-G. Yoo and K.-Y. Park and J. Kim, A Security-performance-balanced User Authentication Scheme for Wireless Sensor Networks, International Journal of Distribution Sensor Networks, vol. 2012, no. 382810, 11 pages, 2012.
[72] ZigBee Alliance, Zigbee specifications, Technical Report Document 053474r06, 2005.
[73] Y. Zhou and Y. Fang, A Two-Layer Key Establishment Scheme for Wireless Sensor Networks, IEEE Trans. on Mobile Computing, vol. 6, no. 9, pp. 1009-1020, 2007.
[74] R. Zhang and J. Shi and Y. Zhang, Secure Multidimensional Range Queries in Sensor Networks, Proc. of the tenth ACM international symposium on Mobile ad hoc networking and computing, pp. 197-206, New Orleans, LA, 2009.
[75] R. Zhang and J. Shi and Y. Liu and Y. Zhang, Verifiable Fine-grained Top-k Queries in Tiered Sensor Networks, Proc. of IEEE International Conference on Computer Communications, pp. 1-9, San Diego, CA, March 2010.
[76] R. Zhang and Y.-C. Zhang and K. Ren, Distributed Privacy-Preserving Access Control in Sensor Networks, IEEE Trans. on Parallel and Distributed Systems, vol. 23, no. 8, pp. 1427-1438, Augest 2012.
[77] X. Zhang and L. Dong and H. Peng and H. Chen and D. Li and C. Li, Achieving Efficient and Secure Range Query in Two-Tiered Wireless Sensor Networks, Proc. of the IEEE/ACM International Symposium on Quality of Service, pp. 380-388, Hong Kong, China, May 2014.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top