跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 16:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊孟昇
研究生(外文):Meng-Sheng Yang
論文名稱:鋰離子電池之電容量衰退模型
論文名稱(外文):Modeling for Capacity Fade in Lithium-ion Battery
指導教授:林巍聳
指導教授(外文):Wei-Song Lin
口試委員:張國維楊棧雲廖德誠
口試日期:2015-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:66
中文關鍵詞:鋰離子電池電容量衰退模型電池循環壽命
外文關鍵詞:Li-ion batterycapacity fade modelestimation of cycle life
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鋰離子電池已經廣泛的應用於智慧型手機、筆記本電腦、電動工具以及電動車等工業產品,相對於鉛蓄電池,鋰離子電池有下列優點:高功率密度、高能量密度、無記憶效應、操作電壓高以及工作溫度範圍寬。做為電動車的電源,鋰離子電池必須承受變動性的負載電流和再生電流,變動性的電流需求很容易引起電極板、電解液、分隔膜的性能劣化而造成電容量衰退甚至縮短電池的循環壽命。本論文針對鋰離子電池在多種放電流的循環使用環境,建立電容量衰退與循環次數的關係,放電流循環考慮電動車負載常見的變動電流峰值和再生電流充電現象,經由分析歸納出各類型放電流循環的放電流特徵,然後利用複迴歸分析推導出放電流特徵與壽命損害因子之間的關係式,並將壽命損害因子代入鋰離子電池的電容量半經驗模型而得到電容量衰退模型,電容量衰退模型可以預測鋰離子電池的剩餘循環壽命,本論文藉由鋰離子電池的充放電循環實驗,取得電容量與循環次數的關係數據來驗證電容量衰退模型。

Lithium-ion batteries have been widely used in smart phones, lab top computers, electric tools, and electric vehicles. In comparison with lead-acid batteries, Lithium -ion batteries have the merits of high power density, high energy density, no memory effect, high working voltage, and wide temperature range in operation. While supplying an electric vehicle, Lithium-ion batteries are frequently challenged by fluctuating discharge/charge currents resulted from changes in load demand and regenerative braking. Under the vehicle environment, the cell plate, electrolyte, and separators of the battery may suffer from damage that eventually causes capacity fade to the battery. This thesis focuses on modeling the capacity fade of the Li-ion battery under the vehicle environment. A good capacity fade model can be used to predict the rest cycle life of the battery. The capacity fade model is basically a semi-empirical model whose adjustable parameters, called the damage factors, are induced from experimental data. The experimental data are obtained by testing the battery on discharge/charge cycles with features commonly found in supplying an electric vehicle. The relation between the damage factors and the features is found by the multiple regression analysis. When the damage factors are determined, the capacity fade model can give estimate to the rest cycle life of the battery. The effectiveness of the capacity fade model has been validated by the experimental data.

誌謝........................................i
摘要.......................................iii
ABSTRACT....................................v
目錄.......................................vii
圖目錄......................................ix
表目錄......................................xi
第一章 緒論................................1
1.1 動機與目標...............................1
1.2 論文架構.................................4
第二章 鋰離子電池特性介紹...................5
2.1 鋰離子電池簡介............................6
2.2 鋰離子電池運作原理........................8
2.3 鋰離子電池運作特性........................11
2.4 鋰離子電池電容量檢測方法..................14
2.4.1影響電池可輸出容量的因素.................14
2.4.2電池電容量檢測方法.......................17
第三章 鋰離子電池電容量衰退因素與模型........21
3.1 鋰離子電池的壽命估測方式..................21
3.2 鋰離子電池的電容量衰退因素................24
3.3 鋰離子電池的電容量衰退模型................27
3.3.1電化學模型..............................28
3.3.2等效電路模型............................31
3.3.3類神經網路模型與分析模型.................34
3.3.4半經驗模型..............................36
第四章 實驗與模型建立.......................42
4.1 鋰離子電池循環充放電測試..................42
4.2 鋰離子電池電容衰退模型建立................53
4.2.1電容量衰退模型..........................53
4.2.2 負載電流特徵與模型驗證..................58
第五章 結論與未來研究方向...................62
5.1 結論.....................................62
5.2 未來研究方向.............................63
參考文獻.....................................64


[Abraham, 2005] Abraham, D. P., Reynolds, E. M., Sammann, E., Jansen, A. N., & Dees, D. W. (2005). Aging characteristics of high-power lithium-ion cells with LiNi0.8Co0.15Al0.05O2 and Li4/3Ti5/3O4 electrodes. Electrochimica Acta, 51(3), 502-510.
[BatteryUniversity, 2011] BatteryUniversity. (2011, 23 July 2011). Types of Lithium‐ion. from http://batteryuniversity.com/learn/article/types_of_lithium_ion
[Bloom, 2001] Bloom, I., Cole, B. W., Sohn, J. J., Jones, S. A., Polzin, E. G., Battaglia, V. S., . . . Case, H. L. (2001). An accelerated calendar and cycle life study of Li-ion cells. Journal of Power Sources, 101(2), 238-247.
[Choi, 2002] Choi, S. S., & Lim, H. S. (2002). Factors that affect cycle-life and possible degradation mechanisms of a Li-ion cell based on LiCoO2. Journal of Power Sources, 111(1), 130-136.
[Cheng, 2009] Chi-Sheng, Cheng (2009). The Algorithm of Constant Efficiency Tracking for Fast Charging., Unpublished master’s thesis, EE, National Chaio-Tung University
[Dinger, 2010] Dinger, A., Martin, R., Mosquet, X., Rabl, M., Rizoulis, D., M.Russo, & Sticher, G. (2010). Batteries for Electric Cars: The Boston Consulting Group.
[Doyle, 1995] Doyle, M., & Newman, J. (1995). The use of mathematical modeling in the design of lithium/polymer battery systems. Electrochimica Acta, 40(13–14), 2191-2196.
[Dubarry, 2007] Dubarry, M., Svoboda, V., Hwu, R., & Liaw, B. Y. (2007). Capacity loss in rechargeable lithium cells during cycle life testing: The importance of determining state-of-charge. Journal of Power Sources, 174(2), 1121-1125.
[Groot, 2012] Groot, J. (2012). State-of-Health Estimation of Li-ion Batteries: Cycle Life Test Methods. CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden: Division of Electric Power Engineering
Department of Energy and Environment.
[Huet, 1998] Huet, F. (1998). A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries. Journal of Power Sources, 70(1), 59-69.
[Hussein, 2013] Hussein, A. A. (2013, 15-19 Sept. 2013). Capacity fade estimation in electric vehicles Li-ion batteries using artificial neural networks. Paper presented at the Energy Conversion Congress and Exposition (ECCE), 2013 IEEE.
[IBR18650B, E-ONE MOLI ENERGY CORP.] (E-ONE MOLI ENERGY CORP.). IBR18650B Data Sheet
[Junyi, 2014] Junyi, S., Dusmez, S., & Khaligh, A. (2014). Optimization of Sizing and Battery Cycle Life in Battery/Ultracapacitor Hybrid Energy Storage Systems for Electric Vehicle Applications. Industrial Informatics, IEEE Transactions on, 10(4), 2112-2121. doi: 10.1109/TII.2014.2334233
[Kalhamer, , 2007] Kalhammer, F. R., Kopf, B. M., Swan, D. H., Roan, V. P., & Walsh, M. P., Chairman. (2007). Status and Prospects for Zero Emissions Vehicle Technology. Report of the ARB Independent Expert Panel 2007.
[Kurisawa, 1997] Kurisawa, I., & Iwata, M. (1997). Internal Resistance and Deterioration of VRLA Battery-Analysis of Internal Resistance Obtained By Direct Current Measurement and Its Application To VRLA Battery Monitoring Technique. Paper presented at the 19th International Telecommunications Energy Conference INTELEC.
[Liu, 2011] Kong-Hsiang, Liu (2011). Modeling and Simulation of Ion Immigration in Lithium-Ion Battery during Charging or Discharging., Unpublished master’s thesis, EE, National Taiwan University
[Lai, 2004] Lai, S.-J., & Chern, T.-L. (2004). Study on estimation of intelligent residual capacity of li-ion batteries.
[Manthiram, 2003] Manthiram, A. (2003). Materials Aspects: An Overview. In G.-A. Nazri & G. Pistoia (Eds.), Lithium Batteries (pp. 3-41): Springer US.
[Min, 2006] Min, C., & Rincon-Mora, G. A. (2006). Accurate electrical battery model capable of predicting runtime and I-V performance. Energy Conversion, IEEE Transactions on, 21(2), 504-511. doi: 10.1109/TEC.2006.874229
[NCR18650, 2010] Panasonic Corporation Energy Company (2010). NCR18650 Data Sheet
[Newman, 1975] Newman, J., & Tiedemann, W. (1975). Porous-Electrode Theory with Battery Applications. Aiche Journal, 21(1), p. 25-41.
[P. Bro, 1990] P. Bro, S. C. L. (1990). Quality and Reliability Methods for Primary Batteries. NY: Wiley.
[Pang, 2001] Pang, S., Farrell, J., Jie, D., & Barth, M. (2001). Battery State of Charge Estimation. Paper presented at the Proceedings of the 2001 American Control Conference.
[Piller, 2001] Piller, S., Perrin, M., & Jossen, A. (2001). Methods for state-of-charge determination and their applications. Journal of Power Sources, 96(1), 113-120.
[Plett, 2002] Plett, G. L. (2002). Kalman-Filter SOC Estimation for LiPB HEV Cells. Paper presented at the 19th Electric Vehicle Symposium, Busan Korea.
[Pop, 2005] Pop, V., Bergveld, H. J., Notten, P. H. L., & Regtien, P. P. L. (2005). State-of-Charge Indication in Portable Application. Paper presented at the IEEE ISIE''05, Proc.
[Ramadass, 2004] Ramadass, P., Haran, B., Gomadam, P. M., White, R., & Popov, B. N. (2004). Development of First Principles Capacity Fade Model for Li-Ion Cells. Journal of The Electrochemical Society, 151(2), A196-A203. doi: 10.1149/1.1634273
[Ramadesigan, 2012] Ramadesigan, V., Northrop, P. W. C., De, S., Santhanagopalan, S., Braatz, R. D., & Subramanian, V. R. (2012). Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective. Journal of The Electrochemical Society, 159(3), R31-R45. doi: 10.1149/2.018203jes
[Safari, 2010] Safari, M., Morcrette, M., Teyssot, A., & Delacourt, C. (2010). Life-Prediction Methods for Lithium-Ion Batteries Derived from a Fatigue Approach: I. Introduction: Capacity-Loss Prediction Based on Damage Accumulation. Journal of The Electrochemical Society, 157(6), A713-A720. doi: 10.1149/1.3374634
[Shen, 2005] Shen, W. X., Chau, K. T., Chan, C. C., & Lo, E. W. C. (2005). Neural network-based residual capacity indicator for nickel-metal hydride batteries in electric vehicles. Vehicular Technology, IEEE Transactions on, 54(5), 1705-1712. doi: 10.1109/TVT.2005.853448
[Spotnitz, 2003] Spotnitz, R. (2003). Simulation of capacity fade in lithium-ion batteries. Journal of Power Sources, 113(1), 72-80.
[Lin, 2007] Shih-Jen, Lin (2007). On Discharging Modeling and Capacity Estimation of Li-Ion Battery., Unpublished master’s thesis, EE, National Chiao Tung University
[Wu, 2010] Tzu-Yu, Wu (2010). New Charging Algorithm to Improve Rechargeable Li-ion Battery Charging Time, Battery Life and Cycle Life for Notebook., Unpublished master’s thesis, EE, National Taiwan Ocean Univerisity
[Lin, 2011] Ting-Da, Lin (2011). Battery Modeling and State-of-Charge Estimation on Lithium-Ion Batteries., Unpublished master’s thesis,EE, National Dong Hwa University.
[Vetter, 2005] Vetter, J., Novák, P., Wagner, M. R., Veit, C., Möller, K. C., Besenhard, J. O., . . . Hammouche, A. (2005). Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 147(1–2), 269-281.
[Wang, 2011] Wang, J., Liu, P., Hicks-Garner, J., Sherman, E., Soukiazian, S., Verbrugge, M., . . . Finamore, P. (2011). Cycle-life model for graphite-LiFePO4 cells. Journal of Power Sources, 196(8), 3942-3948.
[Xu, 2013] Xu, J., Chou, S.-L., Gu, Q.-f., Liu, H.-K., & Dou, S.-X. (2013). The effect of different binders on electrochemical properties of LiNi1/3Mn1/3Co1/3O2 cathode material in lithium ion batteries. Journal of Power Sources, 225(0), 172-178.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文