跳到主要內容

臺灣博碩士論文加值系統

(35.174.62.102) 您好!臺灣時間:2021/07/25 04:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:尹敬威
研究生(外文):Ching-Wei Yin
論文名稱:非理想補償器效應對直流轉換器回授控制穩定度之影響
論文名稱(外文):Effects of Non-ideal Compensators on DC Converter Feedback Control Stability
指導教授:陳德玉
指導教授(外文):Dan Chen
口試委員:邱煌仁陳耀銘陳景然
口試委員(外文):Huang-Jen ChiuYaow-Ming ChenChing-Jan Chen
口試日期:2015-06-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:66
中文關鍵詞:電壓調節器適應性電壓定位高頻寬建模運算放大器穩定度條件
外文關鍵詞:voltage regulator (VR)adaptive voltage positioning (AVP)high bandwidthmodelingoperational amplifier (OP)stability criteria
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在電腦中央處理器的電源電路中,直流電源轉換器為重要的部分。而在直流電源轉換器中,回授控制的設計對於系統表現有著重大的影響。在一個系統中,控制環增益函數包含我們所要的資訊,即系統穩定度和負載暫態響應。因此,一個準確的環增益函數建模對於整個系統設計是不可或缺的要素。
環增益函數一般分成兩個部分。一個是切換式電源轉換器及責任週期調變器的小訊號模型,另一個為回授補償器。一直以來,有許多文獻探討小訊號建模的準確度提升,但是回授補償器的部分卻很少得到重視。當應用於要求更高控制頻寬的電腦中央處理器電源時,這兩個部分都需要更準確的高頻模型。
本篇論文將會探討運算放大器的非理想特性對於補償器轉移函數的影響,包括在補償器轉移函數上發現一對共軛複數的極點和一個正零點,而這些效應會影響轉換器的穩定度邊界。本篇論文也將分析數個常用的補償器類型,並且以兩個實際的直流轉換器做說明,模擬和實作電路量測結果將會用來驗證模型。


DC power converters have been a crucial part of the power system for computer central processor units (CPU), the so-called “v-core” application. The feedback design of a DC converter plays an important role for the system behavior. In such a system, the information contained in the control loop gain function is essential to the system stability and load transient response. An accurate modeling of the loop gain function is therefore an important task for the overall design.
The loop gain function consists of two parts. One is the small-signal low-frequency model of the converter switching circuit and duty-cycle modulator, and the other is the feedback compensator. Continuously efforts have been reported, even until very recently, to improve the accuracy of the small-signal model. The feedback compensator part, however, has received little attention. As the requirement of the control bandwidth is drastically increased for future v-core applications, both parts need accurate higher-frequency modeling.
In this thesis, the effects of the non-ideal characteristics of the operational amplifier on the compensator transfer functions are investigated. The results show surprising behavior that has not been reported elsewhere. This includes the possibility of generating new complex poles and a positive zero in the compensator transfer function that may affect the stability margin of the converters. Several commonly-used compensator types are analyzed. Two practical DC converter examples are used for illustration. Simulations and experimental results are used for verification. The theory and equations developed in this thesis can be used for better assessments of the converter stability performances and better optimization of the controller chips.


口試委員審定書 I
誌謝 II
中文摘要 III
Abstract IV
Table of Contents VI
List of Figures VIII
List of Tables X
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivations 3
1.3 Thesis Organization 5
Chapter 2 Analysis of the Compensator Transfer Functions Using a Non-ideal Operational Amplifier 6
2.1 Modeling the Non-ideal OP Behavior 6
2.2 Derivation of the Transfer Function of the Compensator Examples 9
2.2.1 Compensator Example I: Constant-gain 9
2.2.2 Compensator Example II: Constant Low-frequency Gain and a Zero 12
2.2.3 Compensator Example III: Type III Compensator 15
2.3 Derivation of the Transfer Function of the Voltage Inverter with
an Additional Feedback 17
2.3.1 Voltage Inverter with an Additional Feedback Example I:
Constant-gain 18
2.3.2 Voltage Inverter with an Additional Feedback Example II:
with a Transient Capacitor 20
2.4 Hardware Measurement of the Compensation Network 22
2.5 Explanation of a Positive Zero in a Compensator with Non-ideal OP 24
2.6 Unity-gain Bandwidth and Controller Standby Current 28
2.7 Extension to Operational Trans-conductance Amplifier Compensation 30
Chapter 3 The Effects of Non-ideal Characteristics on DC Power Converter Feedback Performances 32
3.1 Example I: Voltage Mode DC Converter 33
3.1.1 Introduction to a Basic CFVM Buck Converter 33
3.1.2 Compensator Design Guideline Considering the Non-ideal OP Effects 35
3.1.3 Verifications of Non-ideal OP Model in CFVM Buck Converter 36
3.2 Example II: A Current-mode Constant On-time (CMCOT) DC Converter 41
3.2.1 Introduction to a Basic CMCOT Buck Converter 41
3.2.2 Review of a CMCOT Buck Converter with an Offset Cancellation
Circuit (OC) 43
3.2.3 Review of the Small Signal Model for the OCCMCOT Circuit [1] 44
3.2.4 A Transient Capacitor is Added to Improve the Load Transient
Response 46
3.2.5 The Analysis of the Q Factor Adding a Transient Capacitor 50
Chapter 4 Conclusions and Suggested Future Research 53
4.1 Conclusions 53
4.2 Suggested Future Research 54
References 56
Appendix 63


[1]Y.-J. Chen, " Modeling of constant on-time current-mode control scheme with offset correction and adaptive voltage positioning functions for voltage regulator," M.S. thesis, National Taiwan University, 2012.
[2]R. Redl, B. P. Erisman, and Z. Zansky, “Optimizing the load transient response of the buck converter,” in Proc. IEEEAPEC, 1998, pp. 170-176.
[3]Xunwei Zhou, Pit-Leong Wong, PengXu, F. C. Lee, and A. Q. Huang, “Investigation of candidate VRM topologies for future Microprocessors,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1172-1182, Nov. 2000.
[4]W. Huang, “A new control for multi-phase buck converter with fast transient response,” in Proc. Appl. Power Electron. Conf., 2001, pp. 273–279.
[5]M.-T. Tsai, "Analysis and design of current balancing control in voltage-mode multiphase interleaved voltage regulators," M.S. thesis, National Taiwan University, 2010.
[6]C.-H. Chiu, "Beat-frequency oscillation in multiphase interleaved voltage regulators with high-gain peak-current control scheme," M.S. thesis, National Taiwan University, 2010.
[7]Yang Qiu, K. Yao, Yu Meng, Ming Xu, F. C. Lee, and Mao Ye, “Control-loop bandwidth limitations for multiphase interleaving buck converters,” in Proc. IEEE APEC, 2004, pp. 1322-1328.
[8]Y. Panov and M. M. Jovanovic, “Design consideration for 12-V/1.5-V, 50-A voltage regulator modules,” IEEE Trans. Power Electron., vol. 16, no. 6, pp. 776-783, Nov. 2001.
[9]Pit-Leong Wong, F.C. Lee, PengXu, and K. Yao, “Critical inductance in voltage regulator modules,” IEEE Trans. Power Electron., vol. 17, no. 4, pp. 485-492, Jul. 2002.
[10]E. de Jodar, J. A. Villarejo, F. Soto, and J. S. Muro, “Effect of the output impedance in multiphase active clamp buck converters,” IEEE Trans. Ind. Electron., vol. 55, no. 9, pp. 3231-3238, Sept. 2008.
[11]K. Yao, Ming Xu, Yu Meng, and F. C. Lee, “Design considerations for VRM transient response based on the output impedance,” IEEE Trans. Power Electron., vol. 18, no. 6, pp. 1270-1277, Nov. 2003.
[12]S. K. Mishra and K. D. T. Ngo, “Dynamic characterization of the synthetic ripple modulator in a tightly regulated distributed power application,” IEEE Trans. Ind. Electron., vol. 56, no. 4, pp. 1164-1173, April 2009.
[13]A. Borrell, M. Castilla, J. Miret, J. Matas, L. Garcia de Vicuna, “Control design for multiphase synchronous buck converters based on exact constant resistive output impedance,” IEEE Trans. Ind. Electron., vol. 60, no. 11, pp. 4920-4929, Nov. 2013.
[14]M. Lee, D. Chen, K. Huang, C.-W. Liu, and B. Tai, "Modeling and design for a novel adaptive voltage positioning (AVP) Scheme for Multiphase VRMs, " IEEE Trans. on Power Electronics, vol. 23, pp. 1733-1742, July 2008
[15]M. Lee, D. Chen, K. Huang, E. Tseng, and B. Tai, "Comparisons of three control schemes for adaptive voltage position (AVP) droop for VRMs applications," in Proc. IEEE EPE-PEMC, 2006, pp. 206–211.
[16]C.-J. Chen, D. Chen, C.-S. Huang, M. Lee and K.-L. Tseng, "Modeling and design considerations of a novel high-gain peak current control scheme to achieve adaptive voltage positioning for DC power converters," IEEE Trans. on Power Electronics, vol. 24, pp. 2942 - 2950, December. 2009.
[17]Yu-Cheng Lin; Ching-Jan Chen; Dan Chen; Wang, B. "A Ripple-Based Constant On-Time Control With Virtual Inductor Current and Offset Cancellation for DC Power Converters", Power Electronics, IEEE Transactions on, On page(s): 4301 - 4310 Volume: 27, Issue: 10, Oct. 2012
[18]Intel Design Guidelines, "Voltage regulator module (VRM) and enterprise voltage regulator-down (EVRD) 11.1, " September, 2009.
[19]K. Lee, H. Chou, "Analysis of the beat frequency oscillation in voltage regulators," energy conversion congress and exposition (ECCE), September. 2009, pp. 3026-3030.
[20]K. Lee, "Dynamic performance analysis of current sharing control for DC/DC converters, " Ph. D dissertation, Virginia Tech, 2008.
[21]J.-S. Lee, F.-C. Lee, M. Xu, Y. Qiu, "Modeling and analysis for beat-frequency current sharing issue in multiphase voltage regulators," IEEE Power Electronics Specialists Conference, June 2007, pp.1542-1548.
[22]J. Sun, Y. Qiu, M. Xu, and F.-C. Lee, "High-frequency dynamic current sharing analyses for multiphase buck VRs," IEEE Trans. on Power Electronics, vol.22, pp.2424-2431, November. 2007
[23]J. Sun, Y. Qiu, M. Xu, and F.-C. Lee, "Dynamic current sharing analyses for multiphase buck VRs," Applied Power Electronics Conference and Exposition, March 2006, pp. 19-23
[24]Y. Qiu, "High-frequency modeling and analyses for buck and multiphase buck converters," Ph.D dissertation, Virginia Tech, 2005
[25]Yang Qiu, Ming Xu, K. Yao, Juanjuan Sun, and Fred C. Lee, “Multifrequency small-signal model for buck and multiphase buck converters,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1185-1192, Sept. 2006.
[26]Y. Qiu, M. Xu, J. Sun, and F.-C. Lee, "A generic high-frequency model for the nonlinearities in buck converters,", IEEE Trans. on Power Electronics, vol.22, pp.1970-1977, September. 2007
[27]Sheng-Fu Hsiao, Dan Chen, Ching-Jan Chen, Hung-Shou Nien, “A New Multiple-Frequency Small-Signal Model for High-Bandwidth Computer V-Core Regulator Applications,” IEEE Transactions on Power Electronics (accepted), Vol. pp, No. 99, Page(s): 1, Feb. 2015
[28]J. Roh, "High-performance error amplifier for fast transient DC-DC converters," IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 52, no. 9, pp. 591-595, Sept. 2005.
[29]W. Guo, P.-K. Jain, "Analysis and modeling of voltage mode controlled phase current balancing technique for multiphase voltage regulator to power high frequency dynamic load," Applied Power Electronics Conference and Exposition, Feb. 2009, pp.1190-1196.
[30]G. Wester and R. D. Middlebrook, “Low-frequency characterization of switched dc-dc converters,” IEEE Trans. Aerosp. Electron. Syst., vol. 9, no. 3, pp. 376-385, May 1973.
[31]R. D. Middlebrook and S. Cuk, “A general unified approach to modeling switching-converter power stages,”in Proc. IEEE PESC, 1976, pp. 18-34.
[32]M. Clique and A. J. Fossard, “A general model for switching converters,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-13, no. 4, pp. 397-400, July 1977.
[33]A. R. Brown and R. D. Middlebrook, “Sampled-data modeling of switching regulators,” in Proc. IEEE PESC, 1981, pp. 349-369.
[34]Vorperian, V, “Simplified analysis of PWM converters using model of PWM switch. Continuous conduction mode,” IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 3, pp. 490-496, May 1990.
[35]T. Suntio, “Unified average and small-signal modeling of direct-on-time control,” IEEE Trans. Ind. Electron., vol. 53, no. 1, pp. 287-295, Feb. 2006.
[36]D. M. Mitchell, “Pulsewidth modulator phase shift,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-16, no. 3, pp. 272-278, May 1980.
[37]R. D. Middlebrook, “Predicting modulator phase lag in PWM converter feedback loops,” in Proc. POWERCON, 1981, pp. H-4.1-H-4.6.
[38]Jian Li and Fred C. Lee, “New modeling approach and equivalent circuit representation for current-mode control,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1218-1230, May 2010.
[39]R.-B. Ridley, B.-H. Cho, , F.-C. Lee, "Analysis and interpretation of loop gains of multiloop-controlled switching regulators [power supply circuits]," IEEE Trans. on Power Electronics, pp.489-498, Oct 1988.
[40]R.-B. Ridley, "A new, continuous-time model for current-mode control [power convertors]," IEEE Trans on Power Electronics, vol.6, pp.271-280, April 1991.
[41]Shuilin Tian; Lee, F.C.; Mattavelli, P.; Yingyi Yan "Small-signal analysis and design of constant frequency V2 peak control", in Proc. IEEE APEC, 2013, pp. 1717-1724.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top