跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 19:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳振豪
研究生(外文):Chen-Hao Wu
論文名稱:複雜背景之視覺手勢辨識
論文名稱(外文):Vision Based Hand Gesture Recognition in Cluttered Backgrounds
指導教授:張帆人
指導教授(外文):Fan-Ren Chang
口試委員:王伯群林君明王和盛
口試日期:2015-07-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:56
中文關鍵詞:手勢分割演算法支持向量機αβγ濾波器光流法人機介面
外文關鍵詞:hand gesturesegmentationSVMαβγ filteroptical flowHCI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文提出了能夠從複雜背景中找出手部所在位置的影像分割演算法。一般而言,視覺手勢辨識的困難包含了環境光會改變、背景含有膚色物體以及背景物體可能移動等。本文的核心目標是針對彩色相機之影像,能將人手從複雜的背景中分割出來。
為肆應複雜之背景,我們提出拇指扣偵測演算法,其所支援的手形包含拳頭、指向以及勝利三種。拇指扣是上述三種手形正面視角的共同部位。因為拇指扣與背景物之外觀有著明顯的差異(特別是臉部器官),這使它成為一個理想的偵測目標。一旦拇指扣從畫面中偵測到,便可以對其周圍區域作進一步的分析,判斷使用者的手勢。為了訓練拇指扣偵測器,我們由十個人蒐集210張拇指扣影像,並加入2521張隨機的影像作為訓練樣本。這些訓練樣本被取樣成32×40像素大小的影像,並被用來訓練使用局部二值形樣特徵之支持向量機分類器。
以拇指扣偵測為核心技術,我們還建立了虛擬滑鼠人機介面。使用者可以藉由移動拇指扣與點擊手指來操控滑鼠游標。本文使用αβγ濾波器來追蹤並平滑化拇指扣之軌跡,並以光流法偵測使用者手指之點擊動作。這個人機介面程式每秒約可以處理25張影像,勉強符合即時互動的要求。


A robust algorithm capable of segmenting specified hand gestures in cluttered image sequences is proposed. Typically, vision-based gesture recognition systems suffer from the difficulty of hand region segmentation, which includes the change of lighting conditions, the presence of other skin color objects and the movement of background objects. The main concern of this paper is to design an algorithm for RGB camera that locates hand region correctly even under complex backgrounds.
The proposed segmentation algorithm, thumb-cover detection algorithm, restricts itself to support only three hand shapes, i.e. fist, pointing and victory. The thumb cover is the common part appearing in above mentioned hand shapes. It is an ideal target to detect for its distinctness from other background objects (especially facial organs). Once the thumb cover is detected, one can further apply other techniques on its neighboring region to recognize what gesture is posed. To train a detector of thumb cover, we collected 210 thumb-cover images from 10 people and 2521 random images as training samples. These samples, resized to 32 by 40 pixels, are combined to train an SVM with LBP feature applied.
A virtual mouse human computer interaction (HCI) program basing on thumb-cover detection is also implemented. Users can manipulate the mouse cursor by moving his/her thumb cover and clicking his/her index finger in front of a camera. The αβγ filter is adopted to track and smooth the trajectory of thumb cover and optical flow is used to detect the clicking of finger. The HCI program runs at the speed of 25 frames per second (fps), which might be suitable for real time interaction.


摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vi
第一章 緒論 1
1.1 研究動機 1
1.2 手勢辨識介紹 2
1.2.1 接觸式裝置 2
1.2.2 視覺式裝置 3
1.2.3 視覺手勢辨識演算法所面臨之挑戰 3
1.3 論文架構 4
第二章 演算法介紹 6
2.1 灰階特徵值 6
2.1.1 方向梯度直方圖特徵 6
2.1.2 局部二值形樣特徵 11
2.2 分類器 14
2.2.1 感知器 14
2.2.2 支持向量機 17
2.3 αβγ濾波器 21
2.4 光流法 24
第三章 拇指扣偵測演算法 28
3.1 核心概念 28
3.2 拇指扣偵測器 31
3.2.1 訓練樣本 31
3.2.2 訓練結果 32
第四章 手勢辨識之人機介面 36
4.1 人機介面演算法架構 36
4.2 αβγ濾波器參數調校 41
4.3 以光流法偵測手指點擊 45
第五章 結論與未來展望 50
5.1 結論 50
5.2 未來展望 50
第六章 附錄 52
6.1 影像梯度之計算方式 52
6.2 方向梯度直方圖特徵之數學表示 53
參考文獻 55


[1]S. S. Rautaray, A. Agrawal, “Vision Based Hand Gesture Recognition for Human Computer Interaction: A Survey,” in Artificial Intelligence Review, vol. 43, no. 1, pp. 1–54, 2015.
[2]G. ElKoura, K. Singh, “Handrix: Animating the Human Hand,”in ACM SIGGRAPH Symposium on Computer Animation, pp. 110-119, 2003.
[3]D. D. Yang, L. W. Lin, J. X. Yin, L. X. Zhen, and J. C. Huang, “An Effective Robust Fingertip Detection Method for Finger Writing Character Recognition System,” in Internationl Conference on Machine Learning and Cybernetics, vol. 8, pp. 18-21, 2005.
[4]T. Lee and T. Höllerer, “Handy AR: Markerless Inspection of Augmented Reality Objects Using Fingertip Tracking,” in IEEE International Symposium on Wearable Computers, pp. 1-8, 2007.
[5]D. Lee and S. G. Lee, “Vision-based Finger Action Recognition by Angle Detection and Contour Analysis,” ETRI Journal, vol. 33, pp. 1141-1158, 2009.
[6]N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1 pp. 886-893, 2005.
[7]T. Ojala, M. Pietikäinen and T Mäenpää, “Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24(7), pp. 971-987, 2002
[8]T. Ahonen, J. Matas, C. He and M. Pietikäinen, “Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features,” in Scandinavian Conference on Image Analysis, pp. 61-70, 2009.
[9]S. Theodoridis and K. Koutroumbas, “Linear Classifiers,” in Pattern Recognition, 4th ed. Boston: Academic Press, 2009, ch 3, sec. 1, pp. 95-97.
[10]https://en.wikipedia.org/wiki/Quadratic_programming (維基百科)
[11]S. Theodoridis and K. Koutroumbas, “Linear Classifiers,” in Pattern Recognition, 4th ed. Boston: Academic Press, 2009, ch 3, sec. 7, pp. 119-133.
[12]S. Theodoridis and K. Koutroumbas, “Optimization for Constrained Problems,” in Pattern Recognition, 4th ed. Boston: Academic Press, 2009, ch C, sec. 4, pp. 939-941.
[13]Y. Bar-Shalom, X. Rong Li, and T. Kirubarajan, “Estimation for Kinematic Models,” in Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software, John Wiley & Sons, 2004, ch. 6, pp. 267-295.
[14]https://en.wikipedia.org/wiki/Alpha_beta_filter (維基百科)
[15]B. D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” in International Joint Conference on Artificial Intelligence, vol. 81, pp. 674-679, 1981.
[16]G. Farnebäck, “Two-frame motion estimation based on polynomial expansion,” in Scandinavian Conference on Image Analysis, pp. 363-370, 2003.
[17]F.-F. Li, R. Fergus and P. Perona, “Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories,” in IEEE Computer Vision and Pattern Recognition Workshop on Generative-Model Based Vision, 2004.
[18]G. Bradski, The OpenCV Liabrary, Dr. Dobb’s Journal of Software Tools, 2000.
[19]C.-C. Ho, C.-H. Wu and F.-R. Chang, “Robust Algorithms for Fingertips Detection,” in IEEE International Conference on Control & Automation, pp. 1410-1415, 2014


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top