跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/01 15:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳建文
研究生(外文):Chien-Wen Chen
論文名稱:石斑魚病毒之分子學研究:乙型野田病毒線性B細胞抗原決定區與虹彩病毒抗細胞凋亡CARD蛋白
論文名稱(外文):Molecular Study of Grouper Viruses: Linear B-cell Epitope of Betanodavirus and Anti-apoptotic CARD Protein of Iridovirus
指導教授:張繼堯張繼堯引用關係
指導教授(外文):Chi-Yao Chang
口試委員:林富邦林正輝廖文亮邱品文
口試委員(外文):Fu-Pang LinCheng-Hui LinWen-Lian LiaoPinwen-Peter Chiou
口試日期:2015-06-24
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:漁業科學研究所
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:124
中文關鍵詞:乙型野田病毒抗原決定區胜肽單株抗體龍膽石斑神經壞死病毒胜肽進入抑制劑細胞凋亡半胱胺酸蛋白酶聚集功能區石斑魚虹彩病毒半胱胺酸蛋白酶
外文關鍵詞:betanodavirusepitopepeptidemonoclonal antibodygiant groupernervous necrosis viruspeptide entry inhibitorapoptosisCARDgrouperiridoviruscaspase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
乙型野田病毒為引起多種重要海水養殖魚種病毒性神經壞死症的感染原,其感染結果導致全球性的海水魚苗高死亡率。外套蛋白是乙型野田病毒唯一的結構蛋白,具有自行組裝成病毒顆粒的能力。本研究利用一株具有高效價中和能力的單株抗體,RG-M18,來辨識病毒外套蛋白上的線性B細胞抗原決定區。分析一系列大腸桿菌/PET表現系統生產的重組蛋白後,證實RG-M18單株抗體辨識的線性抗原決定區位於此病毒外套蛋白C端介於胺基酸殘基195至338之間,另用一套重疊的人工胜肽被合成來評估對RG-M18單株抗體的結合能力,以確認最小的抗原決定區範圍,分析辨識出195VNVSVLCR202為最小的抗原決定區範圍。利用點漬矩陣和酵素免疫分析法來對比分析這個抗原決定區的丙胺酸掃描突變,結果顯示纈胺酸197,纈胺酸199和半胱胺酸201為抗體結合關鍵性的胺基酸。若將RGNNV,BFNNV和TPNNV基因型病毒上的白胺酸200替換成SJNNV基因型上的甲硫胺酸200並不會影響結合親和力,推測RGM18單株抗體可以辨識乙型野田病毒屬的所有病毒基因型。由競爭實驗的結果顯示此抗原決定區的合成多抗原胜肽具有完全抑制龍膽石斑神經壞死病毒在石斑腦細胞株中的繁殖能力。這些研究結果提供了這株中和性單株抗體新的保護機制,並對乙型野田病毒的疫苗學和胜肽藥物開發具有更寬廣的含意。在虹彩病毒CARD蛋白的抗細胞凋亡研究方面:石斑魚虹彩病毒(GIV)屬於虹彩病毒科、Ranavirus屬,而此病毒科之基因體皆包含了一個具有抗細胞凋亡功能的半胱胺酸蛋白酶聚集功能區基因(caspase recruitment domain, CARD)。石斑魚虹彩病毒之CARD基因可轉錄出91個胺基酸、分子量為10.505 KDa的蛋白,且此蛋白與人類ICEBERG還有其他的病毒所帶有的CARD蛋白高度相似。在本論文中利用北方墨點法證明GIV-CARD於感染細胞後4小時開始轉錄;另一方面,其轉錄完全被cycloheximide所抑制,而非aphidicolin,結果顯示GIV-CARD是一個早期基因。在細胞中的GIV-CARD-EGFP與GIV-CARD-FLAG重組蛋白,可觀察到重組蛋白皆會從細胞質進入細胞核,但在GIV-CARD蛋白上並沒有明顯的核定位序列。在感染GIV的石斑腎臟細胞株中利用RNA干擾技術抑制GIV-CARD的表現量亦可發現同時在早期感染階段也降低其他五個病毒基因的表現量,並且也降低了石斑魚虹彩病毒感染的能力。免疫螢光染色法顯示細胞中所表現的GIV-CARD重組蛋白有效的抑制細胞凋亡的發生。 HeLa細胞經由UV照射或使用anti-Fas抗體處理後分別誘發內在途徑和外在途徑的細胞凋亡。然而,過度表現的重組GIV-CARD蛋白可在HeLa細胞中分別抑制經由粒線體及死亡受體訊號傳遞下的細胞凋亡。最後在本論文提出在HeLa細胞中所表現的GIV-CARD重組蛋白顯著降低經由anti-Fas抗體所誘發的caspase-8和-9的活性。總結而言,這些結果顯示GIV-CARD通過內在途徑和外在途徑抑制細胞凋亡。

In molecular study of linear B-cell epitope in betanodavirus: Betanodavirus is a causative agent of viral nervous necrosis syndrome in many important aquaculture marine fish larvae, resulting in high global mortality. The coat protein of betanodavirus is the sole structural protein, and it can assemble the virion particle by itself. In this study, we used a high-titer neutralizing mAB, RG-M18, to identify the linear B-cell epitope on the viral coat protein. By mapping a series of recombinant proteins generated using the E. coli PET expression system, we demonstrated that the linear epitope recognized by RG-M18 is located at the C-terminus of the coat protein, between amino acid residues 195 and 338. To define the minimal epitope region, a set of overlapping peptides were synthesized and evaluated for RG-M18 binding. Such analysis identified the 195VNVSVLCR202 motif as the minimal epitope. Comparative analysis of Alanine scanning mutagenesis with dot-blotting and ELISA revealed that Valine197, Valine199, and Cysteine201 are critical for antibody binding. Substitution of Leucine200 in the RGNNV, BFNNV, and TPNNV genotypes with Methionine200 (thereby simulating the SJNNV genotype) did not affect binding affinity, implying that RG-M18 can recognize all genotypes of betanodaviruses. In competition experiments, synthetic multiple antigen peptides of this epitope dramatically suppressed giant grouper nervous necrosis virus (GGNNV) propagation in grouper brain cells. The data provide new insights into the protective mechanism of this neutralizing mAB, with broader implications for betanodavirus vaccinology and antiviral peptide drug development. In molecular study of anti-apoptotic CARD protein in iridovirus: Grouper iridovirus (GIV) belongs to the genus Ranavirus of the family Iridoviridae; the genomes of such viruses contain an anti-apoptotic caspase recruitment domain (CARD) gene. The GIV-CARD gene encodes a protein of 91 amino acids with a molecular mass of 10,505 Daltons, and shows high similarity to other viral CARD genes and human ICEBERG. In this study, we used Northern blot to demonstrate that GIV-CARD transcription begins at 4 h post-infection; furthermore, we report that its transcription is completely inhibited by cycloheximide but not by aphidicolin, indicating that GIV-CARD is an early gene. GIV-CARD-EGFP and GIV-CARD-FLAG recombinant proteins were observed to translocate from the cytoplasm into the nucleus, but no obvious nuclear localization sequence was observed within GIV-CARD. RNA interference-mediated knockdown of GIV-CARD in GK cells infected with GIV inhibited expression of GIV-CARD and five other viral genes during the early stages of infection, and also reduced GIV infection ability. Immunostaining was performed to show that apoptosis was effectively inhibited in cells expressing GIV-CARD. HeLa cells irradiated with UV or treated with anti-Fas antibody will undergo apoptosis through the intrinsic and extrinsic pathways, respectively. However, over-expression of recombinant GIV-CARD protein in HeLa cells inhibited apoptosis induced by mitochondrial and death receptor signaling. Finally, we report that expression of GIV-CARD in HeLa cells significantly reduced the activities of caspase-8 and -9 following apoptosis triggered by anti-Fas antibody. Taken together, these results demonstrate that GIV-CARD inhibits apoptosis through both intrinsic and extrinsic pathways.

Table of Contents

Verification letter from the Oral Examination Committee-----------------------------------I
Award------------------------------------------------------------------------------------II
自序------------------------------------------------------------------------------------III
中文摘要---------------------------------------------------------------------------------IV
Abstract---------------------------------------------------------------------------------VI
Table of Contents------------------------------------------------------------------------IX
List of Figures------------------------------------------------------------------------XIII
List of Tables---------------------------------------------------------------------------XV
Chapter 1.Introduction--------------------------------------------------------------------1
1.1 Section of linear B-cell epitope in betanodavirus-------------------------------------1
1.2 Section of anti-apoptotic CARD protein in iridovirus----------------------------------5
Chapter 2.Materials and Methods-----------------------------------------------------------9
2.1 Section of linear B-cell epitope in betanodavirus-------------------------------------9
2.1.1 Viruses and cells-------------------------------------------------------------------9
2.1.2 Preparation of monoclonal antibody-------------------------------------------------10
2.1.3 Construction of plasmids-----------------------------------------------------------10
2.1.4 Expression and purification of recombinant proteins--------------------------------11
2.1.5 SDS-PAGE and Western blotting analyses---------------------------------------------12
2.1.6 Peptide synthesis and dot-blotting analyses----------------------------------------14
2.1.7 ELISA------------------------------------------------------------------------------16
2.1.8 Peptide competitive inhibition assay-----------------------------------------------17
2.1.9 Immunocytochemical staining--------------------------------------------------------18
2.2 Section of anti-apoptotic CARD protein in iridovirus---------------------------------19
2.2.1 Virus and cells--------------------------------------------------------------------19
2.2.2 Construction of plasmids-----------------------------------------------------------20
2.2.3 Sequence analysis and structure modeling-------------------------------------------21
2.2.4 Northern blot hybridization--------------------------------------------------------21
2.2.5 Expression of GIV-CARD-EGFP and GIV-CARD-FLAG in HeLa cells------------------------22
2.2.6 Preparation of GIV-CARD dsRNA------------------------------------------------------23
2.2.7 Total RNA extraction, RT-PCR, and Real-time RT-qPCR analysis-----------------------23
2.2.8 Virus titration--------------------------------------------------------------------25
2.2.9 Immunocytochemical staining--------------------------------------------------------26
2.2.10 TUNEL assay-----------------------------------------------------------------------26
2.2.11 Caspase activity assay------------------------------------------------------------27
2.2.12 Statistical analysis--------------------------------------------------------------28
Chapter 3.Results------------------------------------------------------------------------29
3.1 Section of linear B-cell epitope in betanodavirus------------------------------------29
3.1.1 Mapping betanodavirus coat protein epitope by Western blotting---------------------29
3.1.2 Fine mapping of the betanodavirus coat protein epitope using the pepscan method----30
3.1.3 Alanine-scanning mutagenesis-------------------------------------------------------31
3.1.4 Peptide VNVSVLCR protects GB3 cells from GGNNV infection---------------------------32
3.1.5 Propagation of GGNNV in GB3 cells was inhibited by co-incubation with MAP----------33
3.2 Section of anti-apoptotic CARD protein in iridovirus---------------------------------34
3.2.1 Features of GIV-CARD---------------------------------------------------------------34
3.2.2 Expression of GIV-CARD in GIV-infected GK cells------------------------------------35
3.2.3 Subcellular localization of GIV-CARD-----------------------------------------------36
3.2.4 Inhibition of GIV gene expression and virus infection by knockdown of GIV-CARD in GK
cells------------------------------------------------------------------------------------37
3.2.5 GIV-CARD inhibits apoptosis in HeLa cells------------------------------------------38
3.2.6 Inhibition of caspase-8 and -9 activities by recombinant GIV-CARD------------------39
Chapter 4.Discussion---------------------------------------------------------------------41
4.1 Section of linear B-cell epitope in betanodavirus------------------------------------41
4.2 Section of anti-apoptotic CARD protein in iridovirus---------------------------------45
Acknowledgments--------------------------------------------------------------------------50
References-------------------------------------------------------------------------------51
Figures----------------------------------------------------------------------------------63
Tables-----------------------------------------------------------------------------------86
Appendix: Publications-------------------------------------------------------------------89
I: Recognition of Linear B-cell Epitope of Betanodavirus Coat Protein by RG-M18 Neutralizing
mAB Inhibits Giant Grouper Nervous Necrosis Virus (GGNNV) Infection (PLoS ONE 10(5): e0126121.)
-----------------------------------------------------------------------------------------90
II: Iridovirus CARD Protein Inhibits Apoptosis through Intrinsic and Extrinsic Pathways
(PLoS ONE 10(6): e0129071.)-------------------------------------------------------------107

List of Figures

Figure 1. Epitope mapping using serial recombinant YGNNV coat proteins and RG-M18 mAB.---63
Figure 2. Epitope identification through dot-blotting with synthetic peptides.-----------64
Figure 3. Alanine-scanning mutagenesis of the 195-202 aa epitope.------------------------65
Figure 4. Alignments of coat protein sequence from five betanodavirus genotypes, covering
the regions possessing the epitope recognized by RG-M18 mAB.-----------------------------66
Figure 5. The 8-mer multiple antigen peptide (MAP) protects GB3 cells from GGNNV infection.
-----------------------------------------------------------------------------------------67
Figure 6. Propagation of GGNNV was inhibited by co-incubation with MAP.------------------69
Figure 7. Propagation of GGNNV is inhibited by MAP, but not by mutant-MAP (m-MAP).-------71
Figure 8. Features of grouper iridovirus caspase recruitment domain (GIV-CARD) protein.--72
Figure 9. Northern blot hybridization against grouper iridovirus caspase recruitment domain
(GIV-CARD) mRNA in GIV-infected GK cells.------------------------------------------------74
Figure 10. Subcellular localization of grouper iridovirus caspase recruitment domain
(GIV-CARD) proteins in HeLa cells.-------------------------------------------------------75
Figure 11. Nuclear translocation of GIV-CARD-EGFP in HeLa cells.-------------------------77
Figure 12. Transfection of GK cells with grouper iridovirus caspase recruitment domain
(GIV-CARD) dsRNA inhibits expression of six GIV genes, and reduces GIV infection.--------78
Figure 13. UV or anti-Fas antibody induces apoptosis in HeLa cells.----------------------80
Figure 14. Grouper iridovirus caspase recruitment domain (GIV-CARD) protein protects HeLa
cells from UV- or anti-Fas antibody-induced apoptosis.-----------------------------------81
Figure 15. Inhibition of caspase activity in HeLa cells over-expressing grouper iridovirus
caspase recruitment domain (GIV-CARD) protein.-------------------------------------------83
Figure 16. Immunoprecipitation of GIV-CARD-binding proteins from HeLa cells expressing
GIV-CARD-FLAG.---------------------------------------------------------------------------84


List of Tables

Table 1. Primers for construction of recombinant YGNNV coat protein plasmids.------------86
Table 2. Primers used for polymerase chain reaction.-------------------------------------87
Table 3. Inhibition of UV- or anti-Fas antibody-triggered apoptosis by GIV-CARD protein
as determined through immunocytochemistry analysis.--------------------------------------88

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research.25(17):3389-3402.
Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics.22(2):195-201.
Benchoua A, Couriaud C, Guegan C, Tartier L, Couvert P, Friocourt G, Chelly J, Menissier-de Murcia J, Onteniente B (2002) Active caspase-8 translocates into the nucleus of apoptotic cells to inactivate poly(ADP-ribose) polymerase-2. Journal of Biological Chemistry.277(37):34217-34222.
Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nature Reviews: Microbiology.7(2):99-109.
Bouchier-Hayes L, Martin SJ (2002) CARD games in apoptosis and immunity. EMBO reports.3(7):616-621.
Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annual Review of Cell and Developmental Biology.15:269-290.
Chang CY, Chiu CC, Christopher John JA (2008). The Aquaculture of Groupers: Taiwan Asian Fisheries Society, World Aquaculture Society, The Fisheries Society of Taiwan, National Taiwan Ocean University, Taiwan Press. pp. 207-224.
Chang MX, Chen WQ, Nie P (2010) Structure and expression pattern of teleost caspase recruitment domain (CARD) containing proteins that are potentially involved in NF-kappaB signalling. Developmental and Comparative Immunology.34(1):1-13.
Chen LY, Chen JD (2003) Daxx silencing sensitizes cells to multiple apoptotic pathways. Molecular and Cellular Biology.23(20):7108-7121.
Costa JZ, Adams A, Bron JE, Thompson KD, Starkey WG, Richards RH (2007) Identification of B-cell epitopes on the betanodavirus capsid protein. Journal of Fish Diseases.30(7):419-426.
Crane M, Hyatt A (2011) Viruses of fish: an overview of significant pathogens. Viruses.3(11):2025-2046.
D''Costa SM, Yao H, Bilimoria SL (2001) Transcription and temporal cascade in Chilo iridescent virus infected cells. Archives of Virology.146(11):2165-2178.
Dimmock NJ (1987) Multiple mechanisms of neutralization of animal viruses. Trends in Biochemical Sciences.12:70-75.
Druilhe A, Srinivasula SM, Razmara M, Ahmad M, Alnemri ES (2001) Regulation of IL-1beta generation by Pseudo-ICE and ICEBERG, two dominant negative caspase recruitment domain proteins. Cell Death and Differentiation.8(6):649-657.
Duan H, Dixit VM (1997) RAIDD is a new ''death'' adaptor molecule. Nature.385(6611):86-89.
Everett H, McFadden G (1999) Apoptosis: an innate immune response to virus infection. Trends in Microbiology.7(4):160-165.
Fenner BJ, Thiagarajan R, Chua HK, Kwang J (2006) Betanodavirus B2 is an RNA interference antagonist that facilitates intracellular viral RNA accumulation. Journal of Virology.80(1):85-94.
Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis.18(15):2714-2723.
He JG, Lu L, Deng M, He HH, Weng SP, Wang XH, Zhou SY, Long QX, Wang XZ, Chan SM (2002) Sequence analysis of the complete genome of an iridovirus isolated from the tiger frog. Virology.292(2):185-197.
Hengartner MO (1996) Programmed cell death in invertebrates. Current Opinion in Genetics and Development.6(1):34-38.
Henry H, Thomas A, Shen Y, White E (2002) Regulation of the mitochondrial checkpoint in p53-mediated apoptosis confers resistance to cell death. Oncogene.21(5):748-760.
Hofmann K, Bucher P, Tschopp J (1997) The CARD domain: a new apoptotic signalling motif. Trends in Biochemical Sciences.22(5):155-156.
Huang Y, Huang X, Liu H, Gong J, Ouyang Z, Cui H, Cao J, Zhao Y, Wang X, Jiang Y, Qin Q (2009) Complete sequence determination of a novel reptile iridovirus isolated from soft-shelled turtle and evolutionary analysis of Iridoviridae. BMC Genomics.10:224.
Humke EW, Shriver SK, Starovasnik MA, Fairbrother WJ, Dixit VM (2000) ICEBERG: a novel inhibitor of interleukin-1beta generation. Cell.103(1):99-111.
Ito Y, Okinaka Y, Mori K, Sugaya T, Nishioka T, Oka M, Nakai T (2008) Variable region of betanodavirus RNA2 is sufficient to determine host specificity. Diseases of Aquatic Organisms.79(3):199-205.
Iwamoto T, Mise K, Takeda A, Okinaka Y, Mori K, Arimoto M, Okuno T, Nakai T (2005) Characterization of Striped jack nervous necrosis virus subgenomic RNA3 and biological activities of its encoded protein B2. Journal of General Virology.86(Pt 10):2807-2816.
Iwamoto T, Okinaka Y, Mise K, Mori K, Arimoto M, Okuno T, Nakai T (2004) Identification of host-specificity determinants in betanodaviruses by using reassortants between striped jack nervous necrosis virus and sevenband grouper nervous necrosis virus. Journal of Virology.78(3):1256-1262.
Jancovich JK, Bremont M, Touchman JW, Jacobs BL (2010) Evidence for multiple recent host species shifts among the Ranaviruses (family Iridoviridae). Journal of Virology.84(6):2636-2647.
Jancovich JK, Mao J, Chinchar VG, Wyatt C, Case ST, Kumar S, Valente G, Subramanian S, Davidson EW, Collins JP, Jacobs BL (2003) Genomic sequence of a ranavirus (family Iridoviridae) associated with salamander mortalities in North America. Virology.316(1):90-103.
Johansen R, Sommerset I, Torud B, Korsnes K, Hjortaas MJ, Nilsen F, Nerland AH, Dannevig BH (2004) Characterization of nodavirus and viral encephalopathy and retinopathy in farmed turbot, Scophthalmus maximus (L.). Journal of Fish Diseases.27(10):591-601.
Kantari C, Walczak H (2011) Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochimica et Biophysica Acta.1813(4):558-563.
Lai YS, Chiu HC, Murali S, Guo IC, Chen SC, Fang K, Chang CY (2001) In vitro neutralization by monoclonal antibodies against yellow grouper nervous necrosis virus (YGNNV) and immunolocalization of virus infection in yellow grouper, Epinephelus awoara (Temminck & Schlegel). Journal of Fish Diseases.24(4):237-244.
Lai YS, John JA, Guo IC, Chen SC, Fang K, Chang CY (2002) In vitro efficiency of intra- and extracellular immunization with mouse anti-YGNNV antibody against yellow grouper nervous necrosis virus. Vaccine.20(25-26):3221-3229.
Lai YS, Murali S, Chiu HC, Ju HY, Lin YS, Chen SC, Guo IC, Fang K, Chang CY (2001) Propagation of yellow grouper nervous necrosis virus (YGNNV) in a new nodavirus-susceptible cell line from yellow grouper, Epinephelus awoara (Temminck & Schlegel), brain tissue. Journal of Fish Diseases.24(5):299-309.
Lai YS, Murali S, Ju HY, Wu MF, Guo IC, Chen SC, Fang K, Chang CY (2000) Two iridovirus-susceptible cell lines established front kidney and liver of grouper, Epinephelus awoara (Temminck & Schlegel), and partial characterization of grouper iridovirus. Journal of Fish Diseases.23(6):379-388.
Lamkanfi M, Denecker G, Kalai M, D''Hondt K, Meeus A, Declercq W, Saelens X, Vandenabeele P (2004) INCA, a novel human caspase recruitment domain protein that inhibits interleukin-1beta generation. Journal of Biological Chemistry.279(50):51729-51738.
Lin CH, Christopher John JA, Lin CH, Chang CY (2006) Inhibition of nervous necrosis virus propagation by fish Mx proteins. Biochemical and Biophysical Research Communications.351(2):534-539.
Lin PW, Huang YJ, John JA, Chang YN, Yuan CH, Chen WY, Yeh CH, Shen ST, Lin FP, Tsui WH, Chang CY (2008) Iridovirus Bcl-2 protein inhibits apoptosis in the early stage of viral infection. Apoptosis.13(1):165-176.
Marshall WL, Yim C, Gustafson E, Graf T, Sage DR, Hanify K, Williams L, Fingeroth J, Finberg RW (1999) Epstein-Barr virus encodes a novel homolog of the bcl-2 oncogene that inhibits apoptosis and associates with Bax and Bak. Journal of Virology.73(6):5181-5185.
Matthews GM, Newbold A, Johnstone RW (2012) Intrinsic and extrinsic apoptotic pathway signaling as determinants of histone deacetylase inhibitor antitumor activity. Advances in Cancer Research.116:165-197.
Munday BL, Kwang J, Moody N (2002) Betanodavirus infections of teleost fish: a review. Journal of Fish Diseases.25(3):127-142.
Munday BL, Langdon JS, Hyatt A, Humphrey JD (1992) Mass mortality associated with a viral-induced vacuolating encephalopathy and retinopathy of larval and juvenile barramundi, Lates calcarifer Bloch. Aquaculture.103(3-4):197-211.
Murali S, Wu MF, Guo IC, Chen SC, Yang HW, Chang CY (2002) Molecular characterization and pathogenicity of a grouper iridovirus (GIV) isolated from yellow grouper, Epinephelus awoara (Temminck & Schlegel). Journal of Fish Diseases.25(2):91-100.
Nishizawa T, Furuhashi M, Nagai T, Nakai T, Muroga K (1997) Genomic classification of fish nodaviruses by molecular phylogenetic analysis of the coat protein gene. Applied and Environmental Microbiology.63(4):1633-1636.
Nishizawa T, Takano R, Muroga K (1999) Mapping a neutralizing epitope on the coat protein of striped jack nervous necrosis virus. Journal of General Virology.80 ( Pt 11):3023-3027.
Okinaka Y, Nakai T (2008) Comparisons among the complete genomes of four betanodavirus genotypes. Diseases of Aquatic Organisms.80(2):113-121.
Olveira JG, Souto S, Dopazo CP, Thiery R, Barja JL, Bandin I (2009) Comparative analysis of both genomic segments of betanodaviruses isolated from epizootic outbreaks in farmed fish species provides evidence for genetic reassortment. Journal of General Virology.90(Pt 12):2940-2951.
Panzarin V, Fusaro A, Monne I, Cappellozza E, Patarnello P, Bovo G, Capua I, Holmes EC, Cattoli G (2012) Molecular epidemiology and evolutionary dynamics of betanodavirus in southern Europe. Infection, Genetics and Evolution.12(1):63-70.
Postigo A, Cross JR, Downward J, Way M (2006) Interaction of F1L with the BH3 domain of Bak is responsible for inhibiting vaccinia-induced apoptosis. Cell Death and Differentiation.13(10):1651-1662.
Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. American Journal of Epidemiology.27(3):493-497.
Rodriguez J, Lazebnik Y (1999) Caspase-9 and APAF-1 form an active holoenzyme. Genes and Development.13(24):3179-3184.
Ross L, Guarino LA (1997) Cycloheximide inhibition of delayed early gene expression in baculovirus-infected cells. Virology.232(1):105-113.
Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV (1995) The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell.83(7):1243-1252.
Sachdev S, Hoffmann A, Hannink M (1998) Nuclear localization of IkappaB alpha is mediated by the second ankyrin repeat: the IkappaB alpha ankyrin repeats define a novel class of cis-acting nuclear import sequences. Molecular and Cellular Biology.18(5):2524-2534.
Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research.31(13):3381-3385.
Shisler JL, Moss B (2001) Molluscum contagiosum virus inhibitors of apoptosis: The MC159 v-FLIP protein blocks Fas-induced activation of procaspases and degradation of the related MC160 protein. Virology.282(1):14-25.
Tan WG, Barkman TJ, Gregory Chinchar V, Essani K (2004) Comparative genomic analyses of frog virus 3, type species of the genus Ranavirus (family Iridoviridae). Virology.323(1):70-84.
Thiery R, Cozien J, de Boisseson C, Kerbart-Boscher S, Nevarez L (2004) Genomic classification of new betanodavirus isolates by phylogenetic analysis of the coat protein gene suggests a low host-fish species specificity. Journal of General Virology.85(Pt 10):3079-3087.
Thome M, Gaide O, Micheau O, Martinon F, Bonnet D, Gonzalez M, Tschopp J (2001) Equine herpesvirus protein E10 induces membrane recruitment and phosphorylation of its cellular homologue, bcl-10. Journal of Cell Biology.152(5):1115-1122.
Thome M, Hofmann K, Burns K, Martinon F, Bodmer JL, Mattmann C, Tschopp J (1998) Identification of CARDIAK, a RIP-like kinase that associates with caspase-1. Current Biology.8(15):885-888.
Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E, Neipel F, Mattmann C, Burns K, Bodmer JL, Schroter M, Scaffidi C, Krammer PH, Peter ME, Tschopp J (1997) Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature.386(6624):517-521.
Tortorella D, Gewurz BE, Furman MH, Schust DJ, Ploegh HL (2000) Viral subversion of the immune system. Annual Review of Immunology.18:861-926.
Tsai CT, Ting JW, Wu MH, Wu MF, Guo IC, Chang CY (2005) Complete genome sequence of the grouper iridovirus and comparison of genomic organization with those of other iridoviruses. Journal of Virology.79(4):2010-2023.
Vendramin N, Patarnello P, Toffan A, Panzarin V, Cappellozza E, Tedesco P, Terlizzi A, Terregino C, Cattoli G (2013) Viral Encephalopathy and Retinopathy in groupers (Epinephelus spp.) in southern Italy: a threat for wild endangered species? BMC Veterinary Research.9:20.
Wallach D (1997) Cell death induction by TNF: a matter of self control. Trends in Biochemical Sciences.22(4):107-109.
Wang CH, Hsu CH, Wu YM, Luo YC, Tu MH, Chang WH, Cheng RH, Lin CS (2010) Roles of cysteines Cys115 and Cys201 in the assembly and thermostability of grouper betanodavirus particles. Virus Genes.41(1):73-80.
Wang X, Narayanan M, Bruey JM, Rigamonti D, Cattaneo E, Reed JC, Friedlander RM (2006) Protective role of Cop in Rip2/caspase-1/caspase-4-mediated HeLa cell death. Biochimica et Biophysica Acta.1762(8):742-754.
Yamazaki T, Ichinohe T (2014) Inflammasomes in antiviral immunity: clues for influenza vaccine development. Clinical and experimental vaccine research.3(1):5-11.
Yao YL, Yang WM (2003) The metastasis-associated proteins 1 and 2 form distinct protein complexes with histone deacetylase activity. Journal of Biological Chemistry.278(43):42560-42568.
Yoshikoshi K, Inoue K (1990) Viral nervous necrosis in hatchery-reared larvae and juveniles of Japanese parrotfish, Oplegnathus fasciatus (Temminck & Schlegel). Journal of Fish Diseases.13(1):69-77.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top