跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/21 02:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳為
研究生(外文):Wei Wu
論文名稱:奈米結構之磁碟片在壓痕測試下之數值及實驗研究
論文名稱(外文):Numerical and Experimental Study of Indentation on Nano-patterned Magnetic Disks
指導教授:莊嘉揚
指導教授(外文):Jia-Yang Juang
口試委員:林耿慧蘇育全周元昉
口試日期:2015-01-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:100
中文關鍵詞:讀寫頭-磁片界面磁性儲存奈米柱陣列媒體奈米壓痕試驗
外文關鍵詞:Head-disk interface (HDI)magnetic recordingbit-patterned mediananoindentation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了使硬碟機能突破現有之磁錄密度限制,未來將可能利用奈米柱陣列媒體(Bit-patterned media,簡稱BPM)技術來達成,但此種磁碟片的設計卻可能會在運轉的時候遇到接觸上的問題,因此,探討這種奈米尺度結構的接觸力學問題,可以使我們進一步的了解接觸的現象,並針對磁碟片結構做出修正。
本研究先利用TI-950 TriboIndenter奈米壓痕試驗機台,量測並分析具有奈米柱陣列媒體之新型磁碟片試片的接觸行為,其中試片的表面奈米結構已由原子力顯微鏡(AFM)量測確認,發現傳統連續媒體之接觸剛度大於奈米柱陣列媒體之接觸剛度,且在奈米柱陣列媒體中有微量的塑性變形。
本研究使用有限元素法建構三維有限元素模型計算磁碟片與壓痕器之間的接觸力與下壓深度關係,並與奈米壓痕試驗結果相互比較,發現兩者的趨勢接近,進一步使用有限元素法分析奈米柱幾何參數對磁碟片接觸行為之影響;在所有參數固定,僅改變奈米柱寬度時,發現將奈米柱加寬將有利於塑性變形之減少;而所有參數固定,僅改變奈米柱高度時,發現填入類鑽碳(DLC)以降低奈米柱高度時,雖可以降低塑性變形,但無法完全消除之,除非可以將磁碟片完全平坦化,而移除材料以增加奈米柱之高度時,可以看到接觸壓力明顯降低,並在一臨界高度時,其接觸壓力將低於完全平坦化之奈米柱陣列媒體。
最後,本研究比較使用DLC完全平坦化之奈米柱陣列媒體以及傳統連續媒體之接觸性質,發現兩者結果相近,故可視平坦化為此種磁碟片設計的解決之道。


Bit-patterned media (BPM) is considered as a potential technology to increase recording areal density of magnetic recording; however, since the surface of BPM is discrete, it may confront more tribological challenges than conventional continuous media (CM). Consequently, it is a rather crucial issue of the contact phenomena on nano-structures.
In this study, we conduct nanoindentation tests on a prototype disk sample, which contains both BPM and CM regions, by TI-950 TriboIndenter. The surface topography of the disk was measured by AFM, and is used to create finite element model. We repeated the nanoindentation tests multiple times, and confirmed the results were repeatable. The results show that CM has a larger rigidity than BPM, and that BPM has residual deformation after indention.
We conduct three-dimensional (3D) static finite element analysis to study the contact behavior during nanoindentation tests on continuous and patterned elastic-plastic layered media. At first, we compared the numerical results with experimental results and found that those results are consistent. Secondly, we change the geometry properties of nano-bits in numerical model and study the influences on contact behavior. While changing the width of nano-bits, it shows that the plastic deformation in disk is reduced by increasing the width of nano-bits. While changing the height of nano-bits, the reduction of height of nano-bits by filling diamond-like carbon (DLC) can decrease the magnitude of plastic deformation, but it cannot eliminate residual deformation completely unless the disk is fully planarized with filling materials. Increase of the height of nano-bits by removing materials significantly reduces the contact pressure, and at a particular critical height, the contact pressure on nano-bits is lower than that of the fully planarized one.
At last, we compared the contact behavior between the conventional continuous media and BPM planarized by DLC. The results show that the contact behaviors of those are very close. Therefore, we can regard the planarization as a method to solve the tribological problems of BPM in disk design process.


誌謝 I
中文摘要 II
ABSTRACT III
目錄 IV
表目錄 VII
圖目錄 VIII
符號表 XIII
第一章 緒論 1
1.1 前言 1
1.2 奈米柱規則陣列媒體(BIT-PATTERNED MEDIA) 3
1.3 研究動機與目的 5
1.4 本文內容與架構 6
第二章 文獻回顧與相關理論 7
2.1 文獻回顧 7
2.2 赫茲理論接觸理論介紹與推導[34]–[36], [65] 13
2.2.1 赫茲理論之基本假設 13
2.2.2 赫茲理論之推導 14
2.3 有限元素法之理論與推導 19
2.3.1 固體力學理論 19
2.3.2 有限元素分析流程 19
2.3.3 等效應力與塑性應變計算方式 20
2.4 接觸演算法(CONTACT ALGORITHM) [70] 21
2.5 奈米壓痕試驗(NANOINDENTATION) [71] 22
2.5.1 球面型壓痕器[72] 22
2.5.2 奈米壓痕試驗的外在影響因子 23
第三章 實驗方法與儀器設備 25
3.1 實驗樣本與AFM量測 25
3.2 奈米壓痕試驗 30
第四章 有限元素之模型建立 35
4.1 赫茲理論驗證之模型建立 35
4.2 奈米壓痕試驗之模型建立 36
4.2.1 基本假設 36
4.2.2 奈米壓痕器與磁片模型結構之尺寸設計 37
4.2.3 材料模型之選用設定 40
4.2.4 材料參數之設定 41
4.2.5 網格元素的選用與劃分 42
4.2.6 接觸過程與邊界條件設定 46
4.2.7 接觸設定 47
第五章 結果與討論 49
5.1 赫茲接觸理論與數值方法之驗證 49
5.2 奈米壓痕試驗結果 51
5.3 實驗與數值分析之比較 54
5.4 奈米柱寬度的改變對接觸之影響 58
5.4.1 模擬結果之分析 58
5.4.2 模擬結果之討論 59
5.5 奈米柱高度的改變對接觸之影響 69
5.5.1 模擬結果之分析 69
5.5.2 模擬結果之討論 70
第六章 結論與未來展望 83
6.1 結論 83
6.2 未來展望 84
參考文獻 86
附錄一 各奈米柱高度時單獨奈米柱所受之力 98
附錄二 大負載之奈米壓痕試驗數據 99
附錄三 著作目錄 100


[1]S. Iwasaki and Y. Nakamura, “An analysis for the magnetization mode for high density magnetic recording,” IEEE Transactions on Magnetics, vol. 13, no. 5, pp. 1272–1277, 1977.
[2]D. Weller and a. Moser, “Thermal effect limits in ultrahigh-density magnetic recording,” IEEE Transactions on Magnetics, vol. 35, no. 6, pp. 4423–4439, 1999.
[3]B. Terris and T. Thomson, “Nanofabricated and self-assembled magnetic structures as data storage media,” Journal of physics D: Applied physics, vol. 38, no. 12, pp. R199–R222, Jun. 2005.
[4]M. H. Kryder and R. W. Gustafson, “High-density perpendicular recording—advances, issues, and extensibility,” Journal of Magnetism and Magnetic Materials, vol. 287, pp. 449–458, Feb. 2005.
[5]H. Richter and A. Dobin, “Recording on bit-patterned media at densities of 1 Tb/in and beyond,” IEEE Transactions on Magnetics, vol. 42, no. 10, pp. 2255–2260, 2006.
[6]R. E. . Rottmayer, S. Batra, D. . Buechel, W. A. . Challener, J. Hohlfeld, Y. . Kubota, L. Li, Bin Lu, C. . Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. . Rausch, M. A. . Seigler, D. . Weller, and X. Yang, “Heat-assisted magnetic recording,” IEEE Transactions on Magnetics, vol. 42, no. 10, pp. 2417–2421, 2006.
[7]M. Kryder and E. Gage, “Heat assisted magnetic recording,” Proceedings of the IEEE, vol. 96, no. 11, 2008.
[8]J. Thiele, K. Coffey, M. Toney, J. Hedstorm, and A. Kellock, “Temperature dependent magnetic properties of highly chemically ordered Fe55-xNixPt45L10 films,” Journal of Applied Physics, vol. 91, no. 10, pp. 6595–6600, 2002.
[9]Y. Yoon, “Nano-tribology of discrete track recording media,” UC San Diego, 2010.
[10]T. Ishida, O. Morita, M. Noda, S. Seko, S. Tanaka, and H. Ishioka, “Discrete track magnetic disk using embossed substrate,” IEICE Trans. Fundam., vol. E76A, pp. 1161–1163, 1993.
[11]M. Duwensee, S. Suzuki, J. Lin, D. Wachenschwanz, and F. E. Talke, “Simulation of the head disk interface for discrete track media,” Microsystem Technologies, vol. 13, no. 8–10, pp. 1023–1030, Nov. 2006.
[12]J. Li, J. Xu, and Y. Shimizu, “Performance of Sliders Flying Over Discrete-Track Media,” Journal of Tribology, vol. 129, no. 4, p. 712, 2007.
[13]M. Moneck, J. Zhu, and X. Che, “Fabrication of flyable perpendicular discrete track media,” IEEE Transactions on Magnetics, vol. 43, no. 6, pp. 2127–2129, 2007.
[14]K. Zhang and S. Duan, “Comparison of Track Densities of Discrete Track Media and Continuous Media: A Numerical Model,” IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 3726–3729, 2009.
[15]Z. Fan, D. Tung, Y. Ding, and P. Steiner, “Magnetic Damage and Performance Recovery in Discrete Track Media,” IEEE Transactions on Magnetics, vol. 47, no. 1, pp. 69–73, 2011.
[16]J. Sohn, D. Lee, E. Cho, H. Kim, and S. Sul, “Fabrication and MFM study of 60 nm track-pitch discrete track media,” Nanotechnology, vol. 22, no. 3, p. 035305, Jan. 2011.
[17]T. Thomson, G. Hu, and B. Terris, “Intrinsic Distribution of Magnetic Anisotropy in Thin Films Probed by Patterned Nanostructures,” Physical Review Letters, vol. 96, no. 25, p. 257204, Jun. 2006.
[18]J. M. Shaw, W. H. Rippard, S. E. Russek, T. Reith, and C. M. Falco, “Origins of switching field distributions in perpendicular magnetic nanodot arrays,” Journal of Applied Physics, vol. 101, no. 2, p. 023909, 2007.
[19]K. Şendur and W. Challener, “Patterned medium for heat assisted magnetic recording,” Applied Physics Letters, vol. 94, no. 3, p. 032503, 2009.
[20]J. Juang and D. Bogy, “Nonlinear compensator design for active sliders to suppress head-disk spacing modulation in hard disk drives,” IEEE/ASME Transactions on Mechatronic, vol. 11, no. 3, pp. 256–264, 2006.
[21]J.-Y. Juang and D. B. Bogy, “Air-Bearing Effects on Actuated Thermal Pole-Tip Protrusion for Hard Disk Drives,” Journal of Tribology, vol. 129, no. 3, p. 570, 2007.
[22]J. Juang, D. Chen, and D. Bogy, “Alternate air bearing slider designs for areal density of 1 Tb/in 2,” IEEE Transactions on Magnetics, vol. 42, no. 2, pp. 241–246, 2006.
[23]J. Juang, T. Nakamura, and B. Knigge, “Numerical and experimental analyses of nanometer-scale flying height control of magnetic head with heating element,” IEEE Transactions on Magnetics, vol. 44, no. 11, pp. 3679–3682, Nov. 2008.
[24]U. Boettcher, H. Li, R. a. de Callafon, F. E. Talke, “Dynamic Flying Height Adjustment in Hard Disk Drives Through Feedforward Control,” IEEE Transactions on Magnetics, vol. 47, no. 7, pp. 1823–1829, 2011.
[25]J. Juang, J. Forrest, and F. Huang, “Magnetic head protrusion profiles and wear pattern of thermal flying-height control sliders with different heater designs,” Magnetics, IEEE Transactions, vol. 47, no. 10, pp. 3437–3440, 2011.
[26]C. M. Mate, O. J. Ruiz, R.-H. Wang, B. Feliss, X. Bian, and S.-L. Wang, “Tribological Challenges of Flying Recording Heads Over Unplanarized Patterned Media,” IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 4448–4451, Nov. 2012.
[27]H. Li, H. Zheng, Y. Yoon, and F. E. Talke, “Air Bearing Simulation for Bit Patterned Media,” Tribology Letters, vol. 33, no. 3, pp. 199–204, Jan. 2009.
[28]E. Nunez, C. Yeo, R. Katta, and a. a. Polycarpou, “Effect of planarization on the contact behavior of patterned media,” IEEE Transactions on Magnetics, vol. 44, no. 11, pp. 3667–3670, 2008.
[29]L. Li and D. B. Bogy, “Dynamics of air bearing sliders flying on partially planarized bit patterned media in hard disk drives,” Microsystem Technologies, vol. 17, no. 5–7, pp. 805–812, Jan. 2011.
[30]C. Choi, Y. Yoon, D. Hong, Y. Oh, F. E. Talke, and S. Jin, “Planarization of patterned magnetic recording media to enable head flyability,” Microsystem Technologies, vol. 17, no. 3, pp. 395–402, Jan. 2011.
[31]Jia-Yang Juang and Kuan-Te Lin, “Touchdown of Flying Recording Head Sliders on Continuous and Patterned Media,” IEEE Transactions on Magnetics, vol. 49, no. 6, pp. 2477–2482, 2013.
[32]K.-T. Lin, “Interface Mechanics of Flying Recording Head Sliders on Nanoscale Continuous and Patterned Media,” National Taiwan University, 2013.
[33]J.-Y. Juang, W. Wu, and K.-T. Lin, “Tribological impact of touchdown detection on bit patterned media robustness,” Microsystem Technologies, vol. 20, no. 8–9, pp. 1745–1751, Jun. 2014.
[34]H. Hertz, “On the contact of rigid elastic solids,” J.reine und angewandte Mathematik, vol. 92, pp. 156–171, 1882.
[35]M. T. Huber, “Zur Theorie der Berührung Fester Elastische Körper,” in in Annalen der Physik, 1904, pp. 153 – 163.
[36]F. Bowden and D. Tabor, “The area of contact between stationary and between moving surfaces,” Proceedings of the Royal Society of London., vol. 169, pp. 391–413, 1939.
[37]K. Komvopoulos, “Finite Element Analysis of a Layered Elastic Solid in Normal Contact With a Rigid Surface,” Journal of Tribology, vol. 110, pp. 477–485, 1988.
[38]K. Komvopoulos, “Elastic-Plastic Finite Element Analysis of Indented Layered Media,” Journal of Tribology, vol. 111, pp. 430–439, 1989.
[39]K. Komvopoulos and D.-H. Choi, “Elastic Finite Element Analysis of Multi-Asperity Contacts,” Journal of Tribology, vol. 114, pp. 823–831, 1992.
[40]E. Kral, K. Komvopoulos, and D. B. Bogy, “Elastic-Plastic Finite Element Analysis of Repeated Indentation of a Half-Space by Rigid Sphere,” Journal of Applied Mechanics, vol. 60, pp. 829–841, 1993.
[41]E. Kral, K. Komvopoulos, and D. B. Bogy, “Finite Element Analysis of Repeated Indentation of an Elastic-Plastic Layered Medium by a Rigid Sphere, Part I: Surface Results,” Journal of Applied Mechanics, vol. 62, pp. 20–28, 1995.
[42]E. Kral, K. Komvopoulos, and D. B. Bogy, “Finite Element Analysis of Repeated Indentation of an Elastic-Plastic Layered Medium by a Rigid Sphere, Part II: Subsurface Results,” Journal of Applied Mechanics, vol. 62, pp. 29–42, 1995.
[43]E. Kral, K. Komvopoulos, and D. B. Bogy, “Hardness of Thin-Film Media: Scratch Experiments and Finite Element Simulations,” Journal of Tribology, vol. 118, pp. 1–11, 1996.
[44]E. Kral and K. Komvopoulos, “Three-Dimensional Finite Element Analysis of Surface Deformation and Stresses in an Elastic-Plastic Layered Medium Subjected to Indentation and Sliding Contact Loading,” Journal of Applied Mechanics, vol. 63, pp. 365–375, 1996.
[45]E. Kral and K. Komvopoulos, “Three-dimensional finite element analysis of subsurface stress and strain fields due to sliding contact on an elastic-plastic layered medium,” Journal of Tribology, vol. 119, no. 2, pp. 332–341, 1997.
[46]K. Komvopoulos, “Head–disk interface contact mechanics for ultrahigh density magnetic recording,” Wear, vol. 238, no. 1, pp. 1–11, Mar. 2000.
[47]N. Ye and K. Komvopoulos, “Three-Dimensional Finite Element Analysis of Elastic-Plastic Layered Media Under Thermomechanical Surface Loading,” Journal of Tribology, vol. 125, no. 1, p. 52, 2003.
[48]Z.-Q. Gong and K. Komvopoulos, “Effect of Surface Patterning on Contact Deformation of Elastic-Plastic Layered Media,” Journal of Tribology, vol. 125, no. 1, p. 16, 2003.
[49]Z.-Q. Gong and K. Komvopoulos, “Mechanical and Thermomechanical Elastic-Plastic Contact Analysis of Layered Media With Patterned Surfaces,” Journal of Tribology, vol. 126, no. 1, p. 9, 2004.
[50]R. L. Jackson and I. Green, “A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat,” Journal of Tribology, vol. 127, no. 2, p. 343, 2005.
[51]N. Yu, a. a. Polycarpou, and J. V. Hanchi, “Elastic contact mechanics-based contact and flash temperature analysis of impact-induced head disk interface damage,” Microsystem Technologies, vol. 14, no. 2, pp. 215–227, May 2007.
[52]M. Suk, P. Dennig, and D. Gillis, “Magnetic erasures due to impact induced interfacial heating and magnetostriction,” Journal of tribology, vol. 122, pp. 264–268, 2000.
[53]T. Liew, S. W. Wu, S. K. Chow, and C. T. Lim, “Surface and subsurface damages and magnetic recording pattern degradation induced by indentation and scratching,” Tribology International, vol. 33, no. 9, pp. 611–621, Sep. 2000.
[54]K. M. Lee, C.-D. Yeo, and a. a. Polycarpou, “Nanomechanical Property and Nanowear Measurements for Sub-10-nm Thick Films in Magnetic Storage,” Experimental Mechanics, vol. 47, no. 1, pp. 107–121, Oct. 2006.
[55]J. Jamari and D. J. Schipper, “Experimental Investigation of Fully Plastic Contact of a Sphere Against a Hard Flat,” Journal of Tribology, vol. 128, no. 2, p. 230, 2006.
[56]E. J. Abbott and F. A. Firestone, “Specifying surface quality: a method based on accurate measurement and comparison,” Mechanical Engineering, vol. 55, pp. 569–572, 1933.
[57]W. R. Chang, I. Etsion, and D. B. Bogy, “An Elastic-Plastic Model for the Contact of Rough Surfaces,” Journal of Tribology, vol. 109, no. 2, pp. 257–263, 1987.
[58]A. Ovcharenko, M. Yang, K. Chun, and F. E. Talke, “Simulation of Magnetic Erasure Due to Transient Slider-Disk Contacts,” IEEE Transactions on Magnetics, vol. 46, no. 3, pp. 770–777, Mar. 2010.
[59]A. Ovcharenko and M. Yang, “Effect of impact conditions and slider corner radius on the thermal-mechanical response during slider-disk contacts,” IEEE Transactions on Magnetics, vol. 46, no. 10, pp. 3760–3766, 2010.
[60]A. Ovcharenko, M. Yang, K. Chun, and F. E. Talke, “Transient slider-disk contacts in the presence of spherical contamination particles,” Microsystem Technologies, vol. 17, no. 5–7, pp. 743–747, Jan. 2011.
[61]L. Li, W. Song, C. Zhang, A. Ovcharenko, G. Zhang, and F. E. Talke, “Investigation of thermo-mechanical contact between slider and bit patterned media,” Microsystem Technologies, vol. 18, no. 9–10, pp. 1567–1574, Jun. 2012.
[62]B. Knigge, Z. Bandic, and D. Kercher, “Flying characteristics on discrete track and bit-patterned media with a thermal protrusion slider,” IEEE Transactions on Magnetics, vol. 44, no. 11, pp. 3656–3662, 2008.
[63]N. J. Glassmaker, T. Himeno, C.-Y. Hui, and J. Kim, “Design of biomimetic fibrillar interfaces: 1. Making contact.,” Journal of the Royal Society, Interface / the Royal Society, vol. 1, no. 1, pp. 23–33, Nov. 2004.
[64]C. Greiner, A. Del Campo, and E. Arzt, “Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload.,” Langmuir : the ACS journal of surfaces and colloids, vol. 23, no. 7, pp. 3495–3502, Mar. 2007.
[65]K. L. Johnson, Contact Mechanics. Cambridge, U.K.: Cambridge University Press, 1987.
[66]H. Wu, S.-J. Sang, and Q. An, “A new vibration model for a bearing-rotor system considering a bearing structure,” Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, vol. 225, no. 1, pp. 1–11, Mar. 2011.
[67]I. Gonzalez-Perez, J. L. Iserte, and A. Fuentes, “Implementation of Hertz theory and validation of a finite element model for stress analysis of gear drives with localized bearing contact,” Mechanism and Machine Theory, vol. 46, no. 6, pp. 765–783, Jun. 2011.
[68]S. Rodriguez, J. Alcala, and R. M. Souza, “Effects of elastic indenter deformation on spherical instrumented indentation tests: the reduced elastic modulus,” Philosophical Magazine, vol. 91, no. 7–9, pp. 1370–1386, Mar. 2011.
[69]S. Timoshenko and J. N. Goodier, Theory of Elasticity. Mcgraw-Hill College, 1951.
[70]ANSYS Theory Reference 12.0. SAS IP, Inc. 2009.
[71]A. C. Fischer-Cripps, Nanoindentation. Springer New York, 2011.
[72]J. S. Field and M. V. Swain, “A simple predictive model for spherical indentation,” Journal of Materials Research, vol. 8, no. 02, pp. 297–306, 1993.
[73]N. M. Jennett and J. Meneve, “Depth Sensing Indentation of Thin Hard Films: A Study of Modulus Measurement Sensitivity to Indentation Parameters,” Materials Research Society Proceedings, vol. 522, pp. 239–244, 1995.
[74]“Bruker AFM Probes.” [Online]. Available: www.brukerafmprobes.com.
[75]“Hysitron Inc.” [Online]. Available: http://www.hysitron.com/.
[76]“Roditi international.” [Online]. Available: www.roditi.com.
[77]R. R. Katta, E. E. Nunez, A. a. Polycarpou, and S.-C. Lee, “Plane strain sliding contact of multilayer magnetic storage thin-films using the finite element method,” Microsystem Technologies, vol. 15, no. 7, pp. 1097–1110, Apr. 2009.
[78]D. Bogy and K. Wang, “Stress singularities at interface corners in bonded dissimilar isotropic elastic materials,” International Journal of Solids and Structures, vol. M, pp. 993–1005, 1971.
[79]J. Dundurs and M. Lee, “Stress concentration at a sharp edge in contact problems,” Journal of elasticity, vol. 2, no. 2, pp. 109–112, 1972.
[80]E. Miniatt, A. Waas, and W. Anderson, “An experimental study of stress singularities at a sharp corner in a contact problem,” Experimental Mechanics, pp. 281–285, 1990.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文