跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 10:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱廷彥
研究生(外文):Ting-Yan Chiu
論文名稱:穩態乾顆粒流於粗糙傾斜槽中流變特性之直接與間接量測
論文名稱(外文):Direct and indirect measurements of the rheological property of steady dry granular flows down a rough incline
指導教授:楊馥菱楊馥菱引用關係
指導教授(外文):Fu-Ling Tang
口試委員:周逸儒高國傑
口試委員(外文):Yi-Ju ChouGuo-Jie Gao
口試日期:2015-07-02
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:105
中文關鍵詞:傾斜滑道流受力量測控制體積分析慣性數摩擦係數壁面效應μ-I 定律
外文關鍵詞:inclined granular flowforce measurementcontrol volume analysisinertial numberfriction coefficientwall effectμ-I law
相關次數:
  • 被引用被引用:0
  • 點閱點閱:75
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用系統性直接與間接之量測方法探討乾顆粒流於粗糙傾斜滑道中之流變行為。透過陣列荷重元直接量測顆粒流與底床及側邊界之正向與側向交互作用力,並進一步求得相對應之底床與側牆摩擦係數 μ 及 μ_w。此外,我們利用側向高速影像求得顆粒流運動資訊與荷重元擷取表面作用力,搭配擬二維控制體積法來分析動量守恆,在靜水壓力的假設下反求流場內部摩擦力,及相關內摩擦係數。我們更進一步利用不同資訊估算流場慣性數(inertial number I),以探討相對應之 μ-I 流變關係。不論是以系統平均或局部資訊所得到的 μ-I 數據,均可觀察到 μ 隨I單調且非線性遞增的趨勢,與廣為接受的 μ-I 流變定律吻合,惟利用局部性質所得的數據與利用整體平均所的關係式比起來有較大的變異性,顯示非穩態流場流變行為之局部性。

The dynamics and rheological properties of dry granular inclined steady flows of nearly identical polydisperse spheres down a rough inclined chute are investigated through systematic experiments in this thesis. Direct force measurements via normal and shear normal cells are conducted at both the chute base and one lateral wall so that bulk basal and wall friction coefficients, μ and μw, are captured. To extract internal friction, indirect measurement based on quasi-two-dimensional control volume analysis of bulk stream-wise momentum is performed. In this analysis, the body force and assumed hydrostatic normal pressure are input from the basal normal load cell signal and so does the friction from the lateral frictional walls so that the only unknown is the tangential stress at a specific flow heights. Such indirectly measured internal friction and that from load cell measurements are examined with respect to bulk inertial number I. In calculating I, different estimations of an effective bulk shear strain rate were attempted for the current non-uniform flow. For the direct or indirect μ and all the estimated I, a rather robust trend that increases nonlinearly and monotonically with I is observed. However, the data using local μ and I possess greater dispersion from that use bulk averaged properties which poses questions to the feasibility of capturing local rheological property with mean flow properties.

CONTENTS
List of Figures VII
List of Tables XI
List of Parameters XII
Chapter 1 Introduction and Motivation 1
Chapter 2 Experimental Facility 7
2.1 Reservoir, Chute, and Granular materials 7
2.2 Image Acquisition System 10
2.3 Load-cell System & static calibration 11
Chapter 3 High-speed Image Processing 16
3.1 Particle center location & error 16
3.2 Volume fraction & 3D correction 21
3.3 Particle Tracking Velocimetry & its Error 26
Chapter 4 Flow dynamics from load cell signals 30
4.1 Volume flow rate and comparison to literature data 30
4.2 Basal force under different mass flow rate 41
4.3 Lateral boundary force under different mass flow rates 46
Chapter 5 Flow properties based on high-speed images 58
5.1 Control volume analysis for internal friction 58
5.2 Friction force across the layer 65
5.3 Local μ-I relation 69
5.3.1 Local shear strain rate 69
5.3.2 Basal μ-I along the stream 75
5.4 Effect of non-uniform motions 79
Chapter 6 Boundary effect 83
6.1 Rough bed particle configuration (BCC vs. FCC) 83
6.2 Angle of start for the current granular system 88
6.3 Non-unidirectional motion at the edge of immobile rough bed 94
Chapter 7 Summary and Remarks 99
References 102


Reference
[1] GDR MiDi, “On dense granular flows”, The European Physical Journal E 14, 341-365, 2004
[2] H. M. Jaeger and S. R. Nagel, “Granular solids, liquid, and gases”, Reviews of Modern Physics, 1996
[3] A. Schofield and P. Wroth, “Critical state soil mechanics”, Lecturers in Engineering at Cambrige University, 1968
[4] R. M. Nedderman, “Statics and Kinematics of Granular Materials”, Cambridge University Press 1992
[5] P. Jop, Y. Forterre, and O Pouliquen, “A constitutive law for dense granular flows”, Nature, 2006
[6] O. Pouliquen, C. Cassar, P. Jop, Y. Forterre, and M. Nicolas, “Flow of dense granular material: towards simple constitutive laws”, Journal of Statistical
[7] Y. Forterre and O. Pouliquen, “Flows of Dense Granular Media”, Annu. Rev. Fluid Mech., 2008
[8] P. Jop, Y Forterre, and O. Pouliquen, “Crucial role of side walls for granular surface flows: consequences for the rheology”, Journal of Fluid Mechanics, 2005
[9] C. Ancey, “Dry granular flows down an inclined channel: Experimental investigations on the frictional-collisional regime”, Physical Review E, 2001
[10] R. A. Bagnold, “Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear”, Mathematical and Physical Sciences, 1954
[11] T. C. Halsey, “Granular gravitational collapse and chute flow”, Europhysics Letters, 2002
[12] D. M. Hanes and O. R. Walton, “Simulations and physical measurements of glass spheres flowing down a bumpy incline”, Power technology 2000
[13] W. Bi, R. Delannay, P. Richard, N. Taberlet, and A. Valance, “Two- and three-dimensional confined granular chute flows: experimental and numerical results”, Journal of Physics, 2005
[14] L. E. Silbert, G. S. Grest, and Steven J. Plimpton, “Boundary effects and self-organization in dense granular flows”, Physics of Fluids, 2002
[15] J. Estep and J. Dufek, “Discrete element simulations of bed force anomalies due to force chains in dense granular flows”, Journal of Volcanology and Geothermal Research, 2013
[16] D. Cruz, S. Emam, M. Prochnow, J. N. Roux, and F. Chevoir, “Rheophysics of dense granular materials: Discrete simulation of plane shear flows”, Physical Review, 2005
[17] B. Su ̈mer and M. Sitti, “Rolling and spinning friction characterization of fine particles using lateral force microscopy based contact pushing”, Journal of Adhesion and Technology, 2008
[18] S. B. Savage, “The mechanics of rapid granular flows”, Advances in applied mechanics, 1984
[19] D. Hirshfeld and D. C. Rapaport, “Granular flow from a silo: Discrete-particle simulations in three dimensions”, The European Physical, 2001
[20] L. E. Silbert, J. W. Landry and GS Grest, “Granular flow down a rough inclined plane: transition between thin and thick piles”, Physics of fluids, 2003
[21] L. E. Silbert, D. Ertaş, G. S. Grest, T. C. Halsey, D. Levine, and S. J. Plimpton, “Granular flow down an inclined plane: Bagnold scaling and rheology”, Physical Review, 2001
[22] P. Richard, A. Valance, J. F. Métayer, P. Sanchez, J. Crassous, M. Louge and R. Delannay, “Rheology of Confined Granular Flows: Scale Invariance, Glass Transition, and Friction Weakening”, Physical Review, 2008
[23] M. Guler, T. B. Tuncer and P. J. Bosscher, “Measurement of particle movement in granular silos using image analysis”, J. Comput. Civ. Eng. 13, 116-122, 1999
[24] O. Pouliquen, “Scaling laws in granular flows down rough inclined planes”, Physics of Fluids, 1999
[25] R. Delannay, M. Louge, P. Richard, N. Taberlet and A. Valance, “Towards a theoretical picture of dense granular flows down inclines”, Nature Materials 6, 99-108, 2007
[26] P. Coussot, S. Proust and C. Ancey, “Rheological interpretation of deposits of yield stress fluids”, Journal of Non-Newtonian Fluid Mechanics, 1996


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top