跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/05 13:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許智濠
研究生(外文):Chi-Hou Hoi
論文名稱:利用雙光子聚合之微透鏡陣列之設計與製造
論文名稱(外文):Design and Fabrication of Micro-Lens Arrays by Two-Photon Polymerization
指導教授:鍾添東鍾添東引用關係
指導教授(外文):Tien-Tung Chung
口試委員:王富正李佳翰林錦德林志郎
口試委員(外文):Fu-Cheng WangJia-Han LiChin-Te LinChih-Lang Lin
口試日期:2015-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:85
中文關鍵詞:雙光子聚合雙光子吸收微製造微透鏡微齒輪
外文關鍵詞:two-photon polymerizationtwo-photon absorptionmicro manufacturingmicro lensmicro gear.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文研究以雙光子聚合製作之光場相機微透鏡陣列之設計及製程。光場相機之微透鏡陣列由大量排成陣列的微透鏡組成,陣列中每個微透鏡直徑為100微米,焦距500微米。在大範圍加工中,每個微透鏡的加工時間都頗重要。因此,需要對透鏡的設計和製程進行簡化;選用菲涅耳透鏡是因為其具有比球面透鏡較簡單的加工路徑,所以製程能夠加快。檢查及比較不同壓電平台之間的實際位移反應,同樣也檢查了不同移動速度反應。PI P-611壓電平台表現較PI P-615好,一個較輕的試片載台對所加工的形狀影響較少。雙光子聚合製造系統選用低成本的130kHz高頻率Nd:YAG雷射,高分子材料ORMOCOMP以及放大倍率為100倍、數值孔徑為1.3的物鏡。使用1.2%光起始劑之新配方ORMOCOMP被採用來改善體素大小,讓本實驗室的加工速度比以往經驗更快。透過製造不同體素、不同製造參數的直線來研究此配方之ORMOCOMP的性質。由高解析度掃描式電子顯微鏡所量測得之影像,可取得直線之側向及縱向解析度。由線製造結果所取得的雙光子聚合製程特性,可與PSF Lab軟體的模擬結果比較。根據線製造實驗經驗和結果所提供的資訊,成功製造出數個微型產品。用新配方之ORMOCOMP所製成的菲涅耳微透鏡陣列,具有將光線聚焦及物體成像的功能。四階菲涅耳透鏡、球面透鏡、微齒輪也由此材料製成並具有好的品質。

This thesis studies the design and fabrication of micro-lens arrays for light-field cameras by two-photon polymerization (TPP). A micro-lens array for light-field cameras consist of large number of lenses arranged in array, each micro-lens in the array having diameter of 100 micrometers, and focal length of 500 micrometers. For fabrication over large area, time for fabricating each lens would be important. Therefore, simplifying the design and fabrication for a lens is carried out; Fresnel lens is chosen because it has a fabrication path more simple than spherical lens, and hence faster fabrication. The displacement responses of different piezo stages are checked and compared, as well as those with different speed. The piezo stage PI P-611 preforms better than PI P-615, a lightened adaptor has less effects to the shape fabricated. The TPP fabrication system uses a 130kHz high repetition rate and low-cost Nd:YAG laser. ORMOCOMP and objective lenses with 100x and numerical aperture (NA) of 1.3 are used in TPP production. A new preparation of ORMOCOMP with 1.2% photoinitiator is used to improve voxel size from previous work of our lab so that the fabrication time can be faster. The properties of this preparation of ORMOCOMP are studied by fabricating a series of lines with various voxel distance and fabrication parameters. By the use of high resolution scanning electronic microscope (SEM), the width and height of lines can be obtained. The characterization of TPP fabricating process from line fabrication is compared with simulation result by PSF Lab software. Based on the experience and results from the experiment of line fabrication, several micro products are fabricated successfully. Fresnel micro-lens arrays fabricated with ORMOCOMP are able to focus light and produce object image. Binary and four-level Fresnel zone plate (FZP), spherical micro-lens array and micro-gear are also fabricated with good quality by this preparation of ORMOCOMP.

口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract iv
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES xiv
NOMENCLATURES xv
Chapter 1 Introduction 1
1.1 Background 1
1.2 Literature review 4
1.3 Research motivation 12
1.4 Thesis outline 13
Chapter 2 Principle and fabrication process of TPP 15
2.1 Fundamental theory of TPP process 15
2.2 The process of TPP fabrication 20
2.3 Supercritical point drying process 22
2.4 Scanning electronic microscope image 26
2.5 Principle of spherical lens and Fresnel Zone Plate 27
Chapter 3 Experimental setup and material employed of TPP micro fabrication 31
3.1 Experimental setup of TPP micro fabrication 31
3.2 NTUMFS CAM system for TPP micro fabrication 34
3.3 Material of TPP micro fabrication 36
Chapter 4 Optimization of TPP fabrication parameters 40
4.1 Optimum design for fabrication speed of piezo stage 40
4.2 Optimum design for concentration of photoinitiator 46
4.3 Optimum design of voxel distance for high speed 2D Fresnel micro-lens fabrication 52
Chapter 5 Micro TPP fabrication applications 64
5.1 Fabrication of Fresnel micro-lens array 64
5.2 Fabrication of 4-level Fresnel micro-lens 68
5.3 Fabrication of spherical micro-lens 72
5.4 Fabrication of micro-gear 74
Chapter 6 Conclusions and suggestions 77
6.1 Conclusions 77
6.2 Suggestions 79
References 80


[1] E. Käpylä, S. Turunen, J. Pelto, J. Viitanen and M. Kellomäki, “Investigation of the optimal processing parameters for picosecond laser-induced microfabrication of a polymer-ceramic hybrid material,” Journal of Micromechanics and Microengineering, vol. 21, no. 6, 2011.
[2] S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography,” Journal of Microelectromechanical Systems, vol. 12, no. 5, pp. 533-539, 2003.
[3] T. -T. Chung, C. -L. Tseng, C. -P. Hung, C. -L. Lin, and P. L. Baldeck, “Design and Two-Photon Polymerization of Complex Functional Micro-Objects for Lab-on-a-Chip: Rotating Micro-Valves,” Journal of Neuroscience and Neuroengineering, vol. 2, no. 1, pp. 48-52, 2013.
[4] S. Klein, A. Barsella, G. Taupier, V. Stortz, A. Fort, and K. D. Dorkenoo, “Optical components based on two-photon absorption process in functionalized polymers,” Applied surface science, vol. 252, no. 13, pp. 4919-4922, 2006.
[5] T. Stichel, B. Hecht, R. Houbertz and G. Sextl, “Two-photon polymerization as method for the fabrication of large scale biomedical scaffold applications,” Proceedings Laser Precision Micromachining, pp. 7-10, 2010.
[6] I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Optics letters, vol. 27, pp. 1348-1350, 2002.
[7] M. Göppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Annalen der Physik, vol. 401, no. 3, pp. 273–294, 1931.
[8] W. Kaiser and C. Garrett, “Two-Photon Excitation in CaF2:Eu2+,” Physical Review Letters, vol. 7, no. 6, pp. 229–231, Sep. 1961.
[9] K. -S. Lee, D.-Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications,” Polymers for Advanced Technologies, vol. 17, no. 2, pp. 72-82, Feb. 2006.
[10] A. Spangenberg, N. Hobeika, F. Stehlin, J. -P. Malval, F. Wieder, P. Prabhakaran, P. Baldeck, and O. Sopper, “Recent Advances in Two-Photon Stereolithography,” Updates in Advanced Lithography, pp. 35-63, Jul. 2013.
[11] S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” Journal of Microelectromechanical Systems, vol. 7, no. 4, pp. 411–415, 1998.
[12] S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Optics Letters, vol. 22, no. 2, p. 132, Jan. 1997.
[13] S. R. Marder, J. -L. Brédas, and J. W. Perry, “Materials for multiphoton 3D microfabrication,” MRS Bulletin, vol. 32, pp. 561-565, 2007.
[14] X. -Z. Dong, Z. -S. Zhao, and X. -M. Duan, “Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing,” Applied Physics Letters, vol. 91, no. 12, p. 124103, 2007.
[15] S. Maruo and K. Ikuta, “Fabrication of freely movable microstructures by using two-photon three-dimensional microfabrication,” Micro- and Nano-photonic Materials and Devices, vol. 3937, pp. 106-112, 2000.
[16] Y. -H. Lee, Y. -J. Liu, C. -F. Tzou, M. Bouriau, P. L. Baldeck, and C. -L. Lin, “Optically Driven Gear-Based Mechanical Microtransducer for a Lab-on-a-Chip,” Journal of Neuroscience and Neuroengineering, vol. 2, no. 1, pp. 1-3, 2013.
[17] H. -B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Applied physics letters, vol. 80, no. 20, pp. 3673-3675, 2001.
[18] R. J. DeVoe, H. Kalweit, C. A. Leatherdale, T. R. Williams, “Voxel shapes in two-photon microfabrication,” Proceeding of SPIE, vol. 4797, 2003.
[19] M. E. Motamedi, M. C. Wu, and K. S. J. Pister, “Micro-opto-electro-mechanical devices and on-chip optical processing,” Optical Engineering, vol. 36, no. 5, pp. 1282-1297, 1997.
[20] D. Nieto, A. I. Gómez-Varela, Y. C. Martín, G. M. O’Connor, M. T. Flores-Arias, “Improvement of the optical and morphological properties of microlens arrays fabricated by laser using a sol–gel coating,” Applied Surface Science, vol. 351, pp. 697-703, 2015.
[21] X. Zhu, L. Zhu, H. Chen, Z. Li, W. Zhang, “Fabrication of high numerical aperture micro-lens array based on drop-on-demand generating of water-based molds,” Optics & Laser Technology, vol. 68, pp. 23-27, 2015.
[22] E. Roy, B. Voisin, J. -F. Gravel, R. Peytavi, D. Boudreau, T. Veres, “Microlens array fabrication by enhanced thermal reflow process: Towards efficient collection of fluorescence light from microarrays,” Microelectronic Engineering, vol. 86, no. 11, pp. 2255-2261, 2009.
[23] C. Y. Chang, S. Y. Yang, and J. L. Sheh, “A roller embossing process for rapid fabrication of microlens arrays on glass substrates.” Microsystem Technologies, vol. 12, no. 8, pp. 754-759, 2006.
[24] S. -Y. Chen, “Automatic Large Area Micro Manufacturing System for Two-Photon Polymerization,” M.S. thesis, National Taiwan University, Taiwan, 2014.
[25] M. J. Nasse and J. C. Woehl, “Realistic modeling of the illumination point spread function in confocal scanning optical microscopy,” Journal of the Optical Society of America A, vol. 27, no. 2, pp. 295-302, Feb. 2010.
[26] S. H. Park, T. W. Lim, D. -Y. Yang, S. W. Yi, and H. J. Kong, “Direct Fabrication of Micropatterns and Three-Dimensional Structures Using Nanoreplication-Printing (nRP) Process,” Sensors and Materials, vol. 17, pp. 065-075, 2005.
[27] C. -Y. Liao, “Product Model Acquisition, Preparation, and Simulation for Two-photon Polymerization Micro-manufacturing,” Joint Ph.D. dissertation, University of Joseph Fourier and National Taiwan University, France and Taiwan, 2008.
[28] D. S. Correa, L. D. Boni, A. J. G. Otuka, V. Tribuzi, and C. R. Mendonça, “Two-Photon Polymerization Fabrication of Doped Microstructures,” Polymerization, pp. 333-356, Sep. 2012.
[29] T. Hasegawa, and S. Maruo, “Two-photon microfabrication with a supercritical CO2 drying process toward replication of three-dimensional microstructures,” Micro-nanomechatronics and Human Science (MHS), pp.12-15, 2007
[30] S. Maruo, T. Hasegawa, and N. Yoshimura, “Single-anchor support and supercritical CO2 drying enable high-precision microfabrication of three-dimensional structures,” Optics express, vol. 17, no.23, pp. 20945-20951, 2009
[31] W. Leitner, “Green chemistry: Designed to dissolve,” Nature, vol. 405, no. 6783, pp. 129-130, May. 2000
[32] J. M. García, “Augustin-Jean Fresnel,” Rev. Mex. Oftalmol, vol. 82, no. 2, p. 130, 2008.
[33] “Zone Plates”, X-Ray Data Booklet, Center for X-ray Optics and Advanced Light Source, Lawrence Berkeley National Laboratory, pp. 410-414, retrieved 13 January 2015.
[34] B. Hadimioglu, E. G. Rawson, R. Lujan, M. Lim, J. C. Zesch, B. T. Khuri-Yakub and C. F. Ouate, “High-efficiency Fresnel acoustic lenses,” Ultrasonics Symposium, pp. 579-582, 1993.
[35] G. J. Swanson, and W. B. Veldkamp, “Infrared applications of diffractive optical elements,” Holographic Optics: Design and Applications, vol. 883, pp. 155-162, 1988.
[36] Y. -H Hsueh, “Micro Manufacturing System for Two-Photon Polymerization with Automatic Focus and Tilt Correction,” M.S. thesis, National Taiwan University, Taiwan, 2013.
[37] M. H. Bland and N. A. Peppas, “Photopolymerized multifunctional (meth) acrylates as model polymers for dental applications,” Biomaterials, vol. 17, no.11, pp. 1109-1114, 1996
[38] O. Stephan, “Acrylates and Derivatives: Polymers For Two-Photon Microfabrication,” University of Joseph Fourier, 2013.
[39] T. Woggon, T. Kleiner, M. Punke and U. Lemmer, “Nanostructuring of organic-inorganic hybrid materials for distributed feedback laser resonators by two-photon polymerization,” Optics express, vol. 17, no.4, pp. 2500-2507, Feb. 2009
[40] C. Martineau, R. Anemian, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, “Efficient initiators for two-photon induced polymerization in the visible range,” Chemical Physics Letters, Vol. 362, pp. 291-295, 2002
[41] W. -J. Lee, “Optimization of material and fabrication process for micro fabrication by Two-Photon Polymerization,” M.S. thesis, National Taiwan University, Taiwan, 2014
[42] A. Waldschik, and S. Büttgenbach. “Micro gear pump with internal electromagnetic drive,” Microsystem Technologies, vol. 16, no. 8, pp. 1581-1587, 2010.
[43] B. Y. Tay, N. H. Loh, S. B. Tor, F. L. Ng, G. Fu, and X. H. Lu, “Characterisation of micro gears produced by micro powder injection moulding.” Powder Technology, vol. 188, no. 3, pp. 179-182, 2009.
[44] S. Ling, X. Wu, B. Xu, Y. Hu, F. Luo, F. Gong, C. Du, and S. Ruan, “Laminated fabrication of micro-stepped gear mold based on femtosecond laser cutting of stainless steel foil.” Microsystem Technologies, vol. 19, no. 12, pp. 1981-1990, 2013.
[45] Y. -H. Lee, Y. -J. Liu, C. -F. Tzou, M. Bouriau, P. L. Baldeck, and C. -L. Lin, “Optically Driven Gear-Based Mechanical Microtransducer for a Lab-on-a-Chip,” Journal of Neuroscience and Neuroengineering, vol. 2, no. 1, pp. 58-60, 2013.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top