跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/22 13:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭士俊
研究生(外文):Shih-Chun Kuo
論文名稱:高靈敏度石墨烯應變感測器之研究
論文名稱(外文):Graphene Strain Sensor with High Sensitivity
指導教授:張所鋐
指導教授(外文):Shuo-Hung Chang
口試委員:黃昆平
口試日期:2015-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:105
中文關鍵詞:石墨烯應變應變感測器應變規因子化學氣相沉積法
外文關鍵詞:graphenestrainstrain sensorgauge factorchemical vapor deposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:277
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用化學氣相沉積法(CVD)成長雙層石墨烯,轉印在手機保護貼上製作單片石墨烯應變感測器。之後,將兩片石墨烯重疊轉印在手機保護貼上製作雙片石墨烯應變感測器,並利用精密移動平台在轉印過程中控制兩片石墨烯在手機保護貼上重疊的距離,以控制實驗參數。我們將石墨烯應變感測器置於可彎曲基板上,給予一端位移使基板彎曲產生應變,利用應變規量出石墨烯應變感測器黏貼處的應變,最後利用安捷倫半導體分析儀做其電阻之量測。
根據電阻量測結果,對石墨烯應變感測器施加應變後,改變了石墨烯的有效傳輸距離,其電阻值也隨之改變,正應變越大其電阻也變得越大。而應變感測器的靈敏度可由應變規因子(gage factor)觀察,本研究得出的gage factor也有隨著起始電阻變大而增加的趨勢。並且在相同面積下,本研究利用重疊兩片石墨烯,製作出靈敏度較只有一片石墨烯高的應變感測器。


In this work, bi-layer graphene is grown by CVD and then transferred to mobile phone protective film to produce single graphene film strain sensor. Later on, another graphene is transferred to mobile phone protective film to produce double graphene films strain sensor. The important variable, overlapping length of two graphene layers, is controlled by transferring process on micro precision stage. Graphene strain sensors are placed on a bendable substrate and a fixed displacement is applied on one edge of the substrate. The strain where sensors are placed and resistance are measured by strain gauge and digital multimeter separately.
Based on measurement results, resistance and effective transmission length change when the strain is applied so the resistance gets larger by increasing the strain. The sensitivity of strain sensors is determined by gauge factor. In this work, the relationship between resistance and gage factor is monotonic. In addition, double-film strain sensors have higher sensitivity than single-film strain sensors do.


致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 xiii
第1章 緒論 1
1.1 前言 1
1.2 研究動機 2
第2章 文獻回顧 3
2.1 石墨烯 3
2.1.1 晶體結構與特性 4
2.1.2 石墨烯製備方法 8
2.1.3 石墨烯之轉印方式 14
2.1.4 判定石墨烯之方法 17
2.2 應變感測器 19
2.2.1 應變感測器之介紹 19
2.2.2 石墨烯應變感測之介紹 22
第3章 實驗架構與設備 26
3.1 試片的準備 26
3.1.1 化學氣相法成長石墨烯 27
3.1.2 製作石墨烯應變感測器試片 29
3.2 量測實驗架構 32
3.2.1 石墨烯應變感測器靜態量測實驗 32
3.2.2 石墨烯應變感測器動態量測實驗 36
第4章 實驗結果與討論 39
4.1 石墨烯應變感測器之拉曼光譜分析 39
4.2 石墨烯應變感測器之靜態量測 41
4.2.1 單片石墨烯應變感測器之靜態量測結果 42
4.2.2 雙片石墨烯應變感測器之靜態量測結果 56
4.2.3 石墨烯應變感測器靜態量測實驗之討論 88
4.3 石墨烯應變感測器之動態量測 89
4.3.1 相同應變下不同待測頻率之動態量測結果 90
4.3.2 相同待測頻率不同待測應變之動態量測結果 92
4.3.3 石墨烯應變感測器動態量測之討論 95
4.3.4 比較其他文獻所設計的應變感測器的應變規因子 98
第5章 結論與未來展望 100
5.1 結論 100
5.2 未來展望 101
第6章 參考文獻 102


[1]D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, et al., "Epidermal electronics," science, vol. 333, pp. 838-843, 2011.
[2]X. Dong, B. Li, A. Wei, X. Cao, M. B. Chan-Park, H. Zhang, et al., "One-step growth of graphene–carbon nanotube hybrid materials by chemical vapor deposition," Carbon, vol. 49, pp. 2944-2949, 2011.
[3]Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, "Experimental observation of the quantum Hall effect and Berry''s phase in graphene," Nature, vol. 438, pp. 201-204, 2005.
[4]M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, "Energy band-gap engineering of graphene nanoribbons," Physical review letters, vol. 98, p. 206805, 2007.
[5]K. I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, et al., "Ultrahigh electron mobility in suspended graphene," Solid State Communications, vol. 146, pp. 351-355, 2008.
[6]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, et al., "Superior thermal conductivity of single-layer graphene," Nano letters, vol. 8, pp. 902-907, 2008.
[7]J. S. Bunch, A. M. Van Der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, et al., "Electromechanical resonators from graphene sheets," Science, vol. 315, pp. 490-493, 2007.
[8]C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," science, vol. 321, pp. 385-388, 2008.
[9]X. Dong, Y. Cao, J. Wang, M. B. Chan-Park, L. Wang, W. Huang, et al., "Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications," RSC Advances, vol. 2, pp. 4364-4369, 2012.
[10]Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, et al., "Supercapacitor devices based on graphene materials," The Journal of Physical Chemistry C, vol. 113, pp. 13103-13107, 2009.
[11]S. Gilje, S. Han, M. Wang, K. L. Wang, and R. B. Kaner, "A chemical route to graphene for device applications," Nano letters, vol. 7, pp. 3394-3398, 2007.
[12]J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, "Practical chemical sensors from chemically derived graphene," Acs Nano, vol. 3, pp. 301-306, 2009.
[13]X. Dong, Q. Long, J. Wang, M. B. Chan-Park, Y. Huang, W. Huang, et al., "A graphene nanoribbon network and its biosensing application," Nanoscale, vol. 3, pp. 5156-5160, 2011.
[14]T. Ramanathan, A. Abdala, S. Stankovich, D. Dikin, M. Herrera-Alonso, R. Piner, et al., "Functionalized graphene sheets for polymer nanocomposites," Nature nanotechnology, vol. 3, pp. 327-331, 2008.
[15]N. D. Mermin, "Crystalline Order in Two Dimensions," Phys. Rev. , vol. 176, pp. 250-254, 1968.
[16]K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, et al., "Electric field effect in atomically thin carbon films," science, vol. 306, pp. 666-669, 2004.
[17]K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, et al., "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, vol. 457, pp. 706-710, 2009.
[18]A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature materials, vol. 6, pp. 183-191, 2007.
[19]R. Nair, P. Blake, A. Grigorenko, K. Novoselov, T. Booth, T. Stauber, et al., "Fine structure constant defines visual transparency of graphene," Science, vol. 320, pp. 1308-1308, 2008.
[20]S. Latil and L. Henrard, "Charge carriers in few-layer graphene films," Physical Review Letters, vol. 97, p. 036803, 2006.
[21]S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, et al., "Graphene-based composite materials," Nature, vol. 442, pp. 282-286, 2006.
[22]A. G. Cano-Márquez, F. J. Rodríguez-Macías, J. Campos-Delgado, C. G. Espinosa-González, F. Tristán-López, D. Ramírez-González, et al., "Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes," Nano letters, vol. 9, pp. 1527-1533, 2009.
[23]X. Liang, V. Giacometti, A. Ismach, B. D. Harteneck, D. L. Olynick, and S. Cabrini, "Roller-style electrostatic printing of prepatterned few-layer-graphenes," Applied Physics Letters, vol. 96, p. 013109, 2010.
[24]X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, et al., "Highly conducting graphene sheets and Langmuir–Blodgett films," Nature nanotechnology, vol. 3, pp. 538-542, 2008.
[25]X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al., "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, vol. 324, pp. 1312-1314, 2009.
[26]A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, et al., "Direct chemical vapor deposition of graphene on dielectric surfaces," Nano letters, vol. 10, pp. 1542-1548, 2010.
[27]M. P. Levendorf, C. S. Ruiz-Vargas, S. Garg, and J. Park, "Transfer-free batch fabrication of single layer graphene transistors," Nano Letters, vol. 9, pp. 4479-4483, 2009.
[28]S.-J. Byun, H. Lim, G.-Y. Shin, T.-H. Han, S. H. Oh, J.-H. Ahn, et al., "Graphenes converted from polymers," The Journal of Physical Chemistry Letters, vol. 2, pp. 493-497, 2011.
[29]C. S. Lee, L. Baraton, Z. He, J.-L. Maurice, M. Chaigneau, D. Pribat, et al., "Dual graphene films growth process based on plasma-assisted chemical vapor deposition," in SPIE NanoScience+ Engineering, 2010, pp. 77610P-77610P-7.
[30]Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, et al., "Wafer-scale synthesis and transfer of graphene films," Nano letters, vol. 10, pp. 490-493, 2010.
[31]W. Wu, Q. Yu, P. Peng, Z. Liu, J. Bao, and S.-S. Pei, "Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes," Nanotechnology, vol. 23, p. 035603, 2012.
[32]D. Y. Wang, I. Huang, P. H. Ho, S. S. Li, Y. C. Yeh, D. W. Wang, et al., "Clean‐Lifting Transfer of Large‐area Residual‐Free Graphene Films," Advanced Materials, vol. 25, pp. 4521-4526, 2013.
[33]X.-D. Chen, Z.-B. Liu, C.-Y. Zheng, F. Xing, X.-Q. Yan, Y. Chen, et al., "High-quality and efficient transfer of large-area graphene films onto different substrates," Carbon, vol. 56, pp. 271-278, 2013.
[34]L. Malard, M. Pimenta, G. Dresselhaus, and M. Dresselhaus, "Raman spectroscopy in graphene," Physics Reports, vol. 473, pp. 51-87, 2009.
[35]Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, et al., "Probing Layer Number and Stacking Order of Few‐Layer Graphene by Raman Spectroscopy," small, vol. 6, pp. 195-200, 2010.
[36]J.-Y. Hwang, C.-C. Kuo, L.-C. Chen, and K.-H. Chen, "Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density," Nanotechnology, vol. 21, p. 465705, 2010.
[37]Y.-J. Kim, J. Y. Cha, H. Ham, H. Huh, D.-S. So, and I. Kang, "Preparation of piezoresistive nano smart hybrid material based on graphene," Current Applied Physics, vol. 11, pp. S350-S352, 2011.
[38]T. W. Tombler, C. Zhou, L. Alexseyev, J. Kong, H. Dai, L. Liu, et al., "Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation," Nature, vol. 405, pp. 769-772, 2000.
[39]I. Kang, M. J. Schulz, J. H. Kim, V. Shanov, and D. Shi, "A carbon nanotube strain sensor for structural health monitoring," Smart materials and structures, vol. 15, p. 737, 2006.
[40]D. Chung, "Comparison of submicron-diameter carbon filaments and conventional carbon fibers as fillers in composite materials," Carbon, vol. 39, pp. 1119-1125, 2001.
[41]J. Zhao, C. He, R. Yang, Z. Shi, M. Cheng, W. Yang, et al., "Ultra-sensitive strain sensors based on piezoresistive nanographene films," Applied Physics Letters, vol. 101, p. 063112, 2012.
[42]蕭于哲, "常壓雙層石墨烯的成長與研製," 碩士, 機械工程學研究所, 臺灣大學, 台北市, 2014.
[43]M. Hempel, D. Nezich, J. Kong, and M. Hofmann, "A novel class of strain gauges based on layered percolative films of 2D materials," Nano letters, vol. 12, pp. 5714-5718, 2012.
[44]H. Tian, Y. Shu, Y.-L. Cui, W.-T. Mi, Y. Yang, D. Xie, et al., "Scalable fabrication of high-performance and flexible graphene strain sensors," Nanoscale, vol. 6, pp. 699-705, 2014.
[45]X. Li, R. Zhang, W. Yu, K. Wang, J. Wei, D. Wu, et al., "Stretchable and highly sensitive graphene-on-polymer strain sensors," Scientific reports, vol. 2, 2012.
[46]N.-K. Chang, C.-C. Su, and S.-H. Chang, "Fabrication of single-walled carbon nanotube flexible strain sensors with high sensitivity," Applied Physics Letters, vol. 92, p. 063501, 2008.
[47]X. Li, C. Levy, and L. Elaadil, "Multiwalled carbon nanotube film for strain sensing," Nanotechnology, vol. 19, p. 045501, 2008.
[48]M. Njuguna, C. Yan, N. Hu, J. Bell, and P. Yarlagadda, "Sandwiched carbon nanotube film as strain sensor," Composites Part B: Engineering, vol. 43, pp. 2711-2717, 2012.
[49]N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga, "Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor," Acta Materialia, vol. 56, pp. 2929-2936, 2008.
[50]eFunda. Sensitivity of Strain Gage Wire Materials. Available: http://www.efunda.com/designstandards/sensors/strain_gages/strain_gage_sensitivity.cfm
[51]KYOWA. 半導體應變規KSP系列. Available: http://www.sanlien.com/web/homepage.nsf/foundationview/51A4430E5F06800F4825714100214525


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 8. 李震山,「基本權利之衝突」,月旦法學雜誌,第1期,1995.5
2. 11. 林建中,「隱私權概念初探-從美國法之觀點切入」,憲政時代,第23卷第1期,1997.7
3. 12. 林紀東,「論人權之保障與私人相互間之法律關係」,法令月刊,第18卷第1期,1967.1.1
4. 13. 法治斌,「當表意自由碰到名譽保護時,歐洲人怎麼辦?」,「歐洲人權法院」學術研討會,刊於憲政時代,第27卷第3期,2002.1
5. 14. 法治斌,「論美國妨害名譽法制之憲法意義」,政大法學評論,第33期,1986.6
6. 17. 張訓嘉,「言論自由與公眾人物之名譽權」,律師雜誌,第221期,1998.2
7. 18. 張惠菁,「一張黛妃的獨家照片竟可賣到台幣一千萬元!」,新新聞週報,第548期,1997.9.7-9.13
8. 20. 許志雄,「人權規定之第三人效力」,月旦法學雜誌,第0期,1995.4
9. 21. 許宗力,「基本權利的第三人效力與國庫效力」,月旦法學教室,第9期,2003.7
10. 22. 許宗力,「基本權的保障與限制(下)」,月旦法學教室,第14期,2003.12
11. 23. 許宗力,「基本權的保障與限制(上)」,月旦法學教室,第11期,2003.9
12. 24. 陳新民,「憲法基本權利及「對第三者效力」之理論」,政大法學評論,第31期,1985.6
13. 25. 程明修,「契約自由與國家之保護義務」,憲政時代,第30卷第2期,2004.10
14. 26. 程明修,「基本權拋棄」,月旦法學教室,第35期,2005.9
15. 31. 楊敦和,「論『隱私權』」,法律評論,第40卷第9期,1974.9.1