跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 04:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林威廷
研究生(外文):Wei-Ting Lin
論文名稱:水氣摻雜石墨烯之溫度感測器
論文名稱(外文):Water-vapor-doped Graphene for Temperature Sensor
指導教授:張所鋐
口試委員:蘇志中黃昆平
口試日期:2015-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:75
中文關鍵詞:石墨烯溫度感測器溫度電阻係數水氣摻雜氫原子摻雜
外文關鍵詞:graphenetemperature sensorTCRwater vapor dopinghydrogen doping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究用石墨烯作為感測元件以設計溫度感測器。由化學氣相沉積法成長之少層石墨烯,以手機保護貼為轉印基材將其轉印於玻璃上,製成溫度感測器,分別於大氣環境、真空環境、水氣環境三種環境中進行電阻對溫度變化的量測,並且藉由氫原子摻雜的前置步驟使石墨烯對水氣的吸附能力和吸附速率提升。電阻由Agilent 34411A之萬用電表量測,溫度由三段式高溫爐控制,最後經由計算得到溫度感測器於各環境下之溫度電阻係數(TCR),並藉此分析其溫度感測的性質。
研究結果得到,一般大氣環境中重摻雜石墨烯之TCR值容易受環境的影響,其溫度感測能力不佳。真空環境中純質石墨烯為負溫度電阻係數(NTC),且TCR值為定值,即感測器之靈敏度穩定。而水氣輕摻雜之石墨烯為NTC性質,其|TCR|隨溫度上升而變大,即溫度越高感測器之靈敏度越佳,至於水氣重摻雜時則為PTC性質。另外,氫原子摻雜後的水氣輕摻雜之石墨烯有最大的溫度感測靈敏度,其|TCR|於65 ℃時約為0.35 %/℃。


Graphene was taken as the sensing element to design a new temperature sensor in this study. Temperature sensor was made by the few-layer graphene which was grown by chemical vapor deposition (CVD) and then transferred to glass as the transfer substrate. We measured the relationship between temperature and resistance under normal atmospheric environment, vacuum environment and water vapor environment with hydrogen-doping preprocess respectively. Then we calculated temperature coefficient of resistance (TCR) of these cases and analyzed their temperature sensing behaviors.
The experimental result indicates that the graphene has poor temperature sensing property under normal atmospheric environment. Intrinsic graphene under vacuum environment is negative temperature coefficient (NTC) and its sensitivity is stable. Lightly-vapor-doped graphene has NTC as well. However, heavily-vapor-doped graphene is positive temperature coefficient (PTC). And the |TCR| or the sensitivity of lightly-vapor-doped graphene increases as temperature rises. Furthermore, hydrogen doping will increase absorption capacity and absorption rate of graphene, which causes larger |TCR|, about 0.35 %/℃ at 65 ℃.


誌謝 i
摘要 ii
Abstract iii
第1章 序論 1
1.1 前言 1
1.2 研究動機 2
第2章 文獻回顧 3
2.1 石墨烯 3
2.1.1 石墨烯之結構與特性 3
2.1.2 石墨烯之製備方法 7
2.1.3 石墨烯之轉印方式 9
2.1.4 石墨烯層數之判定 14
2.2 石墨烯應用於溫度感測 17
2.3 石墨烯之氣體吸附與高溫退火 23
第3章 實驗流程與架構 28
3.1 化學氣相沉積法成長石墨烯 29
3.1.1 催化材料的準備 29
3.1.2 成長步驟及成長參數 30
3.2 試片製作 32
3.2.1 試片基材的準備 32
3.2.2 石墨烯轉印 33
3.2.3 電極處理 34
3.3 拉曼光譜分析 35
3.4 大氣環境氣體吸附之溫度感測實驗 36
3.5 真空環境之溫度感測實驗 38
3.6 水氣吸附之溫度感測實驗 40
3.7 氫氣退火後水氣吸附之溫度感測實驗 41
第4章 實驗結果與討論 42
4.1 石墨烯製備結果 42
4.2 大氣環境氣體吸附之溫度感測 44
4.3 真空環境之溫度感測 47
4.4 水氣吸附之溫度感測 52
4.4.1 少量水氣吸附量測 52
4.4.2 不同濕度吸附量測 53
4.4.3 不同升溫速率量測 57
4.4.4 水氣環境與真空環境比較 58
4.5 氫氣退火後水氣吸附之溫度感測 61
第5章 結論與未來展望 67
5.1 結論 67
5.2 未來展望 69
第6章 參考文獻 70


[1]Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. A., ... & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. science, 306(5696), 666-669.
[2]Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature materials, 6(3), 183-191.
[3]Cooper, D. R., D’Anjou, B., Ghattamaneni, N., Harack, B., Hilke, M., Horth, A., ... & Yu, V. (2012). Experimental review of graphene. ISRN Condensed Matter Physics, 2012.
[4]Hass, J., De Heer, W. A., & Conrad, E. H. (2008). The growth and morphology of epitaxial multilayer graphene. Journal of Physics: Condensed Matter, 20(32), 323202.
[5]Avouris, P., Chen, Z., & Perebeinos, V. (2007). Carbon-based electronics. Nature nanotechnology, 2(10), 605-615.
[6]Wilson, M. (2006). Electrons in atomically thin carbon sheets behave like massless particles. Physics Today, 59(1), 21-23.
[7]Wallace, P. R. (1947). The band theory of graphite. Physical Review, 71(9), 622.
[8]Semenoff, G. W. (1984). Condensed-matter simulation of a three-dimensional anomaly. Physical Review Letters, 53(26), 2449.
[9]Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., ... & Geim, A. K. (2008). Fine structure constant defines visual transparency of graphene. Science, 320(5881), 1308-1308.
[10]Dusari, S., Barzola-Quiquia, J., Esquinazi, P., & García, N. (2011). Ballistic transport at room temperature in micrometer-size graphite flakes. Physical Review B, 83(12), 125402.
[11]Bai, H., Li, C., & Shi, G. (2011). Functional composite materials based on chemically converted graphene. Advanced Materials, 23(9), 1089-1115.
[12]Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnol, 4, 217 (2009).
[13]Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., ... & Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565.
[14]Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A. Y., Feng, R., ... & De Heer, W. A. (2004). Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. The Journal of Physical Chemistry B, 108(52), 19912-19916.
[15]Emtsev, K. V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G. L., Ley, L., ... & Seyller, T. (2009). Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature materials, 8(3), 203-207.
[16]Sutter, P. (2009). Epitaxial graphene: How silicon leaves the scene. Nature Materials, 8(3), 171-172.
[17]Strupinski, W., Grodecki, K., Wysmolek, A., Stepniewski, R., Szkopek, T., Gaskell, P. E., ... & Baranowski, J. M. (2011). Graphene epitaxy by chemical vapor deposition on SiC. Nano letters, 11(4), 1786-1791.
[18]Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., ... & Ruoff, R. S. (2009). Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324(5932), 1312-1314.
[19]Lee, Y., Bae, S., Jang, H., Jang, S., Zhu, S. E., Sim, S. H., ... & Ahn, J. H. (2010). Wafer-scale synthesis and transfer of graphene films. Nano letters, 10(2), 490-493.
[20]Bae, S., Kim, H., Lee, Y., Xu, X., Park, J. S., Zheng, Y., ... & Iijima, S. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology, 5(8), 574-578.
[21]Wang, D. Y., Huang, I., Ho, P. H., Li, S. S., Yeh, Y. C., Wang, D. W., ... & Chen, C. W. (2013). Clean‐Lifting Transfer of Large‐area Residual‐Free Graphene Films. Advanced Materials, 25(32), 4521-4526.
[22]Chen, C. S., & Hsieh, C. K. (2014). An easy, low-cost method to transfer large-scale graphene onto polyethylene terephthalate as a transparent conductive flexible substrate. Thin Solid Films, 570, 595-598.
[23]Malard, L. M., Pimenta, M. A., Dresselhaus, G., & Dresselhaus, M. S. (2009). Raman spectroscopy in graphene. Physics Reports, 473(5), 51-87
[24]Calizo, I., Teweldebrhan, D., Bao, W., Miao, F., Lau, C. N., & Balandin, A. A. (2008, March). Spectroscopic Raman nanometrology of graphene and graphene multilayers on arbitrary substrates. In Journal of Physics: Conference Series (Vol. 109, No. 1, p. 012008). IOP Publishing.
[25]Lee, S., Lee, K., & Zhong, Z. (2010). Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano letters, 10(11), 4702-4707.
[26]Hao, Y., Wang, Y., Wang, L., Ni, Z., Wang, Z., Wang, R., ... & Thong, J. T. (2010). Probing Layer Number and Stacking Order of Few‐Layer Graphene by Raman Spectroscopy. Small, 6(2), 195-200.
[27]Wu, W., Yu, Q., Peng, P., Liu, Z., Bao, J., & Pei, S. S. (2012). Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes. Nanotechnology, 23(3), 035603.
[28]Hwang, E. H., & Sarma, S. D. (2008). Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Physical Review B, 77(11), 115449.
[29]Hwang, E. H., Adam, S., & Sarma, S. D. (2007). Carrier transport in two-dimensional graphene layers. Physical Review Letters, 98(18), 186806.
[30]Stauber, T., Peres, N. M. R., & Guinea, F. (2007). Electronic transport in graphene: A semiclassical approach including midgap states. Physical Review B, 76(20), 205423.
[31]Cheianov, V. V., & Fal’ko, V. I. (2006). Friedel oscillations, impurity scattering, and temperature dependence of resistivity in graphene. Physical review letters, 97(22), 226801.
[32]Vasko, F. T., & Ryzhii, V. (2007). Voltage and temperature dependencies of conductivity in gated graphene. Physical Review B, 76(23), 233404.
[33]Chen, J. H., Jang, C., Xiao, S., Ishigami, M., & Fuhrer, M. S. (2008). Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature nanotechnology, 3(4), 206-209.
[34]Fratini, S., & Guinea, F. (2008). Substrate-limited electron dynamics in graphene. Physical Review B, 77(19), 195415.
[35]Ishigami, M., Chen, J. H., Cullen, W. G., Fuhrer, M. S., & Williams, E. D. (2007). Atomic structure of graphene on SiO2. Nano letters, 7(6), 1643-1648.
[36]Stolyarova, E., Rim, K. T., Ryu, S., Maultzsch, J., Kim, P., Brus, L. E., ... & Flynn, G. W. (2007). High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proceedings of the National Academy of Sciences, 104(22), 9209-9212.
[37]Skákalová, V., Kaiser, A. B., Yoo, J. S., Obergfell, D., & Roth, S. (2009). Correlation between resistance fluctuations and temperature dependence of conductivity in graphene. Physical Review B, 80(15), 153404.
[38]Bolotin, K. I., Sikes, K. J., Hone, J., Stormer, H. L., & Kim, P. (2008). Temperature-dependent transport in suspended graphene. Physical review letters, 101(9), 096802.
[39]Shao, Q., Liu, G., Teweldebrhan, D., & Balandin, A. A. (2008). High-temperature quenching of electrical resistance in graphene interconnects. Applied Physics Letters, 92(20), 202108.
[40]Al-Mumen, H., Rao, F., Dong, L., & Li, W. (2013, April). Design, fabrication, and characterization of graphene thermistor. In Nano/Micro Engineered and Molecular Systems (NEMS), 2013 8th IEEE International Conference on (pp. 1135-1138). IEEE.
[41]Yan, C., Wang, J., & Lee, P. S. (2015). Stretchable Graphene Thermistor with Tunable Thermal Index. ACS nano, 9(2), 2130-2137.
[42]Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., & Novoselov, K. S. (2007). Detection of individual gas molecules adsorbed on graphene. Nature materials, 6(9), 652-655.
[43]Leenaerts, O., Partoens, B., & Peeters, F. M. (2008). Adsorption of H 2 O, N H 3, CO, N O 2, and NO on graphene: A first-principles study. Physical Review B, 77(12), 125416.
[44]Huang, B., Li, Z., Liu, Z., Zhou, G., Hao, S., Wu, J., ... & Duan, W. (2008). Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor. The Journal of Physical Chemistry C, 112(35), 13442-13446.
[45]Yang, Y., Brenner, K., & Murali, R. (2012). The influence of atmosphere on electrical transport in graphene. Carbon, 50(5), 1727-1733.
[46]Feng, T., Xie, D., Li, G., Xu, J., Zhao, H., Ren, T., & Zhu, H. (2014). Temperature and gate voltage dependent electrical properties of graphene field-effect transistors. Carbon, 78, 250-256.
[47]Sidorov, A. N., Sherehiy, A., Jayasinghe, R., Stallard, R., Benjamin, D. K., Yu, Q., ... & Sumanasekera, G. U. (2011). Thermoelectric power of graphene as surface charge doping indicator. Applied Physics Letters, 99(1), 013115.
[48]Ni, Z. H., Wang, H. M., Luo, Z. Q., Wang, Y. Y., Yu, T., Wu, Y. H., & Shen, Z. X. (2010). The effect of vacuum annealing on graphene. Journal of Raman Spectroscopy, 41(5), 479-483.
[49]Abe, S., Nagoya, Y., Watari, F., & Tachikawa, H. (2010). Interaction of Water Molecules with Graphene: A Density Functional Theory and Molecular Dynamics Study. Japanese Journal of Applied Physics, 49(1S), 01AH07.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 1. 余文恭,論工程契約之性質及其義務群,月旦法學雜誌,第129期,2006年2月。
2. 2. 吳光陸,消滅時效與債務人異議之訴,月旦法學雜誌,第75期,2001年8月。
3. 3. 吳光陸,再論以仲裁判斷強制執行之執行名義—兼評台灣高等法院九十年重上字第三00號判決,月旦法學雜誌,第96期,2003年5月。
4. 4. 吳從周,備忘民法總則之二年短期消滅時效期間—實務案例類型化及其分析,月旦法學教室,第45期,2006年7月。
5. 5. 吳從周,變遷中之消滅時效期間起算點--從最高法院九十一年度臺上字第一三一二號等三則判決之啟示談起,東吳法律學報,第17卷第2期,2005年12月。
6. 6. 李家慶,工程仲裁之過去、現在未來,中華民國仲裁協會創會五十週年特刊,2005年8月。
7. 7. 林明鏘,ETC判決與公益原則-評臺北高等行政法院九十四年度訴字第七五二號判決及九十四年度停字第一二二號裁定,月旦法學雜誌,第134期,2006年7月。
8. 8. 林誠二,政府採購契約消滅時效條款,月旦法學教室,第21期,2004年7月。
9. 9. 林誠二,消滅時效之期間,月旦法學教室,第1期,2002年11月。
10. 10. 林誠二,定作人瑕疵擔保損害賠償請求權之消滅時效,月旦法學雜誌,第86期,2002年7月。
11. 11. 林誠二,論政府採購之履約保證金--兼評最高法院九一年度臺上字第九○一號民事判決,臺灣本土法學雜誌,第72期,2005年7月。
12. 12. 林誠二,製造物供給契約之消滅時效期間,月旦法學教室,第33期,2005年7月。
13. 13. 林俊益,法院對仲裁之協助與監督—仲裁法實施後之現況分析,中華民國仲裁協會創會五十週年特刊,2005年8月。
14. 14. 林俊益,論仲裁判斷之確定力與執行力,仲裁季刊,第60期,2001年2月。
15. 15. 黃立,德國民法消滅時效制度的改革,政大法學評論,第76期,2003年12月。
 
無相關點閱論文