跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 20:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧玟翰
研究生(外文):Wen-Han Lu
論文名稱:整合避障與車輛穩定之主動安全控制策略研究
論文名稱(外文):The Research of Active Safety Control Strategy Integrating Obstacle Avoidance and Vehicle Stability
指導教授:鄭榮和
口試委員:詹魁元李綱
口試日期:2015-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:143
中文關鍵詞:避障策略主動轉向主動煞停車輛穩定控制駕駛輔助技術
外文關鍵詞:obstacle avoidance control strategyactive steeringactive brakingvehicle stability controlADAS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目標在於建立一套整合避障策略與車輛穩定策略之主動安全控制策略,可作為駕駛輔助技術應用於智慧三輪車輛上,使其在時速50公里以下擁有主動循跡轉向及主動煞停避障功能。本策略除了建立避障控制所需之情境判斷與操作決策流程以及路徑循跡控制方法外,可針對車輛與障礙物間距離以及相對速度,藉由調整控制參數,規劃多條轉向避障路徑。並整合車輛穩定策略包含防滑煞車控制、翻覆偵測警示與車輛轉向動態控制,以提升車輛於循跡避障過程之穩定性。本研究首先利用MATLAB/Simulink建立控制策略模型,搭配以CarSim軟體建立之車輛動態模型進行模型迴路模擬( MIL )驗證與策略參數調整,並透過實車測試數據調整車輛模型動態特性。接著將控制策略利用可程式控制器MicroAutoBox進行硬體迴路模擬驗證( HIL ),探討控制策略之實時可行性與評估其使用效益。最後,透過整合避障策略與車輛穩定策略可以在主動煞停避障過程中,最多減少3.8公尺的煞車距離,以及在主動轉向避障過程中,增加駕駛者0.28秒以上的反應時間。

The purpose of this research is to establish an active safety control strategy integrating obstacle avoidance and vehicle stability can be used as a driver assistance technology on an intelligent vehicle. We develop a tricycle equipped with active steering, lane tracking and active braking control to assist driver to dodge obstacle on the road or to stop the vehicle under 50km/h. This strategy not only consists of obstacle avoidance control including situation judgment flowchart with operational decision-making process and path following control method, but also can adjust the parametric path planning algorithm to plan several paths according to the distance and relative velocity between the vehicle and obstacle. And it integrates the vehicle stability strategy including anti-slip braking control, rollover detection warning and vehicle steering dynamic stability control in order to enhance the steadiness through the path tracking process. We establish the control strategy on MATLAB/Simulink and the vehicle dynamic model on CarSim to execute the Model-in-the-Loop simulation and parameter adjustment. And then we modify the dynamic characteristic of the vehicle model through experiment. After the completion of virtual validation, we compile the control strategy with programmable controller MicroAutoBox to conduct the Hardware-in-the-Loop simulation and to discuss the feasibility of strategy and the evaluation of its effectiveness. Last, this research proposes a control strategy integrating obstacle avoidance and vehicle stability which can lower the braking distance up to 3.8 m in active braking control and increase the reaction time at least 0.28 second for driver in active steering control.

致謝 I
摘要 III
Abstract IV
目錄 V
圖目錄 VII
表目錄 XVI
1. 第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 研究流程與方法 3
1.4 本文架構 6
2. 第二章 文獻回顧 7
2.1 主動安全策略發展簡介 7
2.2 避障控制策略文獻回顧 12
2.3 車輛穩定技術文獻探討 22
2.4 小結 25
3. 第三章 車輛模型與系統架構建立 26
3.1 CarSim車輛與道路模型建立 26
3.2 實車感測器、致動器與控制器簡介 30
3.2.1 雷射測距儀( LIDAR ) 30
3.2.2 煞車制動器 31
3.2.3 油門致動器 32
3.2.4 轉向致動器 32
3.2.5 速度感測器 33
3.2.6 可程式控制器( MicroAutoBox, MABX ) 34
3.3 避障模型架構建立 35
3.4 翻覆偵測模型建立 36
3.5 車輛動態穩定模型建立 37
3.6 小結 39
4. 第四章 主動安全避障控制策略 40
4.1 主動安全控制策略架構 41
4.2 避障情境判斷與操作決策流程架構 42
4.3 模糊控制理論與車道保持輔助策略 45
4.4 參數化轉向路徑規劃方法 52
4.5 路徑循跡控制 55
4.6 轉向點與策略調整 57
4.7 小結 58
5. 第五章 模擬結果分析與探討 59
5.1 車輛穩定策略模擬分析 59
5.2 主動安全控制策略模型迴路模擬分析 65
5.3 主動安全控制策略硬體迴路模擬分析 101
5.4 主動轉向避障控制之舒適度分析 136
5.5 小結 137
6. 第六章 總結與未來方向 138
6.1 研究總結 138
6.2 未來方向 139
參考文獻 140


[1]Wikipedia: DARPA Grand Challenge, http://en.wikipedia.org/wiki/DARPA_Grand_Challenge
[2]EURO NCAP: 2013 AEB Tests, http://www.euroncap.com/en/vehicle-safety/safety-campaigns/2013-aeb-tests/
[3]National Highway Traffic Safety Administration, “Preliminary Statement of Policy Concerning Automated Vehicles,” Washington, DC, 2013
[4]NHTSA website, http://www.nhtsa.gov/
[5]Wikipedia: Google Driverless Car, http://zh.wikipedia.org/wiki/Google_Driverless_Car
[6]BMW Introduces Its Autonomous Driverless Car, http://www.willappsug.com/2014/01/bmw-introduces-its-autonomous-driverless-car/
[7]M-BENZ Driverless Car,
http://fiscaltoday.com/driverless-car-googles-bid-get-auto-industry/
[8]歐盟新規例要求 2014 年所有新車都將配備自動煞車系統, http://chinese.engadget.com/2012/08/05/eu-legislation-requires-cars-to-include-autonymous-braking/
[9]視訊鏡頭, http://www.sae.org/dlymagazineimages/web/516/11702_15456.jpg
[10]雷射測距儀, http://www.caradvice.com.au/293366/autonomous-emergency-braking-explained/
[11]雷達測距儀, http://trafficsafe.org/index.php/aeb-incentive-scheme-tabled-government-briefing-7627/
[12]R. Siegwart, and I. R. Nourbakhsh, Introduction to Autonomous Mobile Robots, 2004.
[13]V. Lumelsky, T. Skewis, “Incorporating Range Sensing in the Robot Navigation Function,” IEEE Transactions on System Man and Cybernatics, vol. 20, no. 5, pp.1058-1069, 1990.
[14]M. J. Borenstein, Y. Koren, “The Vector Field Histogram-Fast Obstacle Avoidance for Mobile Robots,” IEEE Transactions on Robotics and Automation, vol. 7, 1991.
[15]Y. Koren, J. Borenstein, “Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation,” IEEE Conference on Robotics and Automation, pp. 1398-1404, 1991.
[16]R. C. Coulter, “Implementation of the pure-pursuit pathtracking algorithm,” Tech. Rep. CMU-RI-TR-92-01, RoboticsInstitute, Carnegie Mellon University, Pittsburgh, Pa, USA, 1992.
[17]D. Lechner, G. Malaterre, “Emergency maneuver experimentation using a driving simulator ,” SAE Report No 910016, Presented at Autotechnologies 5th Conference and Exposition, Monte Carlo, Monaco, 1991.
[18]D. V. McGehee, E. N. Mazzae, G. H. S. Baldwin, “Examination of Drivers'' Collision Avoidance Behavior Using Conventional and Antilock Brake Systems on the Iowa Driving Simulator,” Human Factors & Vehicle Safety Research, NHTSA Report, 1999.
[19]G. Malaterre, F. Ferrandes, D. Fleury, D. Lechner, “Decision making in emergency situations,” Ergonomics, pp. 643–655, 1988.
[20]A. Gurov, A. Sengupta, M. Jonasson, L. Drugge, “Collision Avoidance Driver Assistance System Using Combined Active Braking and Steering,” 12th International Symposium on Advanced Vehicle Control, 22-26 Sep. 2014.
[21]J. Shah, P. Zegelaar, M. Best, “Performance of Emergency Steer Assist in Front Wheel and Rear Wheel Steering Vehicle,” 12th International Symposium on Advanced Vehicle Control, 22-26 Sep. 2014.
[22]J. Jansson, J. Johansson, F. Gustafsson, “Decision Making for Collision Avoidance Systems,” SAE Technical Paper 2002-01-0403, 2002.
[23]A. Eckert, B. Hartmann, P. E. Rieth, “Emergency steer assist – advanced driver assistance system for emergency lane change maneuvers,” FISITA World Automotive Congress, Paper F2010E017, Hungary, 2010.
[24]J. Mårtensson, M. Nybacka, J. Jerrelind, L. Drugge, “Evaluation of safety distance in vehicle platoons by combined braking and steering,” 11th International Symposium on Advanced Vehicle Control (AVEC12), Seoul, South Korea, 2012.
[25]A. Eidehall, D. Madas, “Real time path planning for threat assessment and collision avoidance by steering,” Intelligent Transportation Systems - (ITSC), 2013 16th International IEEE Conference, pp. 916-921, 6-9 Oct. 2013.
[26]D. Madas, M. Nosratinia, M. Keshavarz, P. Sundstrom, R. Philippsen, A. Eidehall, K.-M. Dahlen, “On path planning methods for automotive collision avoidance,” Intelligent Vehicles Symposium (IV), pp. 931-937, 23-26 June 2013.
[27]Wikipedia: Euler Spiral, http://en.wikipedia.org/wiki/Euler_spiral
[28]Levien and Raph, “The euler spiral: a mathematical history,” EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2008-111, Sep. 2008.
[29]D.-H. Shin, S. Singh, “Path generation for robot vehicles using composite clothoid segments,” Robotics Institute, Carnegie Mellon University, Tech. Rep. CMU-RI-TR-90-31, Dec. 1990.
[30]A. Scheuer, T. Fraichard, “Collision-free and continuous-curvature path planning for car-like robots,” IEEE International Conference on Robotics and Automation, April 1997.
[31]K. R. Meidenbauer, “An Investigation of the Clothoid Steering Model for Autonomous Vehicles,” M.S. thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2007.
[32]K. M. Kritayakirana, “Autonomous Vehicle Control at the Limits of Handling,” Ph.D. dissertation, Stanford University, 2012.
[33]D.K. Wilde, “Computing clothoid segments for trajectory generation,” Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference, pp. 2440-2445, 10-15 Oct. 2009.
[34]J.-Y. Huang, H.-X. Pan, X.-W. Yang, J.-D. Li, “Fuzzy Controller Design of Autonomy Overtaking System,” Intelligent Engineering Systems, 2008. INES 2008. International Conference, pp. 281-285, 25-29 Feb. 2008.
[35]G. Usman, F. Kunwar, “Autonomous Vehicle Overtaking- an Online Solution,” ICAL ''09. IEEE International Conference, pp.596-601, 5-7 Aug. 2009.
[36]M.T. Emirler, I.M.C. Uygan, B.A. Guvenc, L. Guvenc, “Robust PID Steering Control in Parameter Space for Highly Automated Driving,” International Journal of Vehicular Technology, 2014.
[37]J.-W. Perng, Y.-H. Wen, W.-J. Chang, M.-Y. Ciou, “Design and implementation of an intelligent vehicle driving controller,” Control Conference (ASCC), 2011 8th Asian, pp. 1111-1116, 15-18 May 2011.
[38]J.E. Naranjo, C. Gonzalez, R. Garcia, T. de Pedro, “Lane-Change Fuzzy Control in Autonomous Vehicles for the Overtaking Maneuver,” Intelligent Transportation Systems, IEEE Transactions, vol. 9, no. 3, pp. 438-450, Sep. 2008.
[39]A. Gray, Y. Gao, T. Lin, J. K. Hedrick, H.-E. Tseng, F. Borrelli, “Predictive control for agile semi-autonomous ground vehicles using motion primitives,” American Control Conference (ACC), pp. 4239-4244, 27-29 June 2012.
[40]A. Gray, Y. Gao, J.K. Hedrick, F. Borrelli, “Robust Predictive Control for semi-autonomous vehicles with an uncertain driver model,” Intelligent Vehicles Symposium (IV), pp. 208-213, 23-26 June 2013.
[41]J. Huang, H.-S. Tan, F. Bu, “Preliminary steps in understanding a target & control based driver steering model,” American Control Conference (ACC), pp. 5243-5248, June 2011.
[42]H.-S. Tan, J. Huang, F. Bu, B. Litkouhi, “Driver steering model based on a target & control scheme,” American Control Conference (ACC), pp. 4610-4615, June 1 2011.
[43]R. D. Ervin, Y. Guy, “The influence of weights and dimensions on the stability and control of heavy-duty trucks in Canada,” Volume I - technical report. Final Report, Michigan University, Ann Arbor, Transportation Research Institute, Report No. UMTRI-86-35/I, 1986.
[44]B.-C. Chen, H. Peng, “Differential-Braking-Based Rollover Prevention for Sport Utility Vehicles with Human-in-the-loop Evaluations,” Vehicle System Dynamics, vol. 36, no. 4-5, pp. 359-389, 2001.
[45]K. Koibuchi, M. Yamamoto, Y. Fukada, S. Inagaki, “Vehicle Stability Control in Limit Corning by Active Brake,” SAE Paper No. 960487.
[46]N. Mutoh, K. Yokota, “A Torque Distribution Method Using CCD Cameras That Is Suitable for Electric Vehicles Driven by Front and Rear Wheels Independently,” Power Conversion Conference - Nagoya, 2007. PCC ''07 , pp. 955-962, 2-5 April 2007.
[47]Y.-C. Shyu, “Integrated Vehicle Dynamic Control for an Electric Vehicle by Independent Four-Wheel Traction Torque and Braking Force Control,” M.S. thesis, National Taiwan University, Taiwan, 2011.
[48]dSPACE Introduction, http://www.sciformosa.com.tw/dspace.php
[49]J.Y. Wong, Theory of ground vehicles, 3rd ed., John Wiley & Sons, New York, 2001.
[50]H.-H. Chiang, S.-J. Wu, J.-W. Perng, B.-F. Wu, T.-T. Lee, “The Human-in-the-Loop Design Approach to the Longitudinal Automation System for an Intelligent Vehicle,” IEEE Transactions on Systems, Man and Cybernetics, vol.40, no.4, pp. 708-720, July 2010.
[51]OPAL-RT Introduction, http://www.cybernet-ap.com.tw/zh.php?m=360


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
無相關點閱論文