跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 15:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳承恩
研究生(外文):Chen-En Wu
論文名稱:赫茲接觸理論於大壓痕深度之適用性研究
論文名稱(外文):Applicability of Hertz Contact Theory in Large Indentation
指導教授:莊嘉揚
指導教授(外文):Jia-Yang Juang
口試委員:周元昉陳俊杉李明蒼
口試委員(外文):Yuan-Fang ChouChuin-Shan ChenMing-Tsang Lee
口試日期:2015-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:109
中文關鍵詞:赫茲接觸理論奈米壓痕試驗有限元素法聚二甲基矽氧烷
外文關鍵詞:Hertz contact theorynanoindentationfinite element method (FEM)polydimethylsiloxane (PDMS)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:444
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
赫茲接觸理論(Hertz contact theory)是接觸力學中最基本的理論之一,並由Heinrich Hertz 於1882年發表。理論的內容為探討彈性體的接觸,並以數學模型描述接觸力、壓痕深度、接觸範圍及接觸面應力分布等。由於,赫茲理論必須滿足小接觸範圍及小壓痕深度的前提假設。然而根據實驗的結果卻發現,太小的壓痕深度會造成雜訊的影響過大,無法得到準確的結果量測。因此為了解決這個實驗上的問題,增加壓痕深度為一項解決的方法。然而,目前卻還沒有完整的研究指出增加壓痕深度,對於赫茲理論適用性的影響。因此本研究試圖討論增加壓痕深度對於赫茲理論的影響,並試圖量化適用的範圍。
本研究利用有限元素軟體建構二維軸對稱的模型,並計算彈性體接觸之結果。其中,接觸的情形包括剛體球與彈性半無限域、有限厚度的彈性平板以及不同半徑之彈性球等的接觸。試圖將赫茲理論延伸至大範圍的接觸。根據模擬的結果,發現當剛體球與彈性半無限域接觸時,壓痕深度與剛體球半徑的比例可以達到0.66,都還符合赫茲理論中負載與壓痕深度的關係。同時,本研究也針對此接觸情形進行聚二甲基矽氧烷(polydimethylsiloxane,PDMS)的奈米壓痕試驗,並且得到與模擬相同趨勢的結果。此外,根據模擬本研究指出,當彈性平板的厚度為剛體球半徑的12倍時,負載與壓痕深度的關係在壓痕深度比1以下,皆會完全符合赫茲理論。另外,根據模擬剛體球只要和曲率半徑為剛體球本身之半徑10倍以上的彈性球接觸,負載與壓痕深度的結果都會相同;且當彈性與剛體球半徑為10倍時,負載與壓痕深度的關係在壓痕深度比1以下,會完全符合赫茲理論。同時本研究也針對材料表面特性對於奈米壓痕試驗的影響作了許多的探討,如表面摩擦係數與親疏水性等。
根據以上結果,當進行奈米壓痕試驗量測材料的機械性質時,壓痕深度只要在本研究提出之範圍內,皆可以得到不受雜訊干擾的準確結果。


Hertz contact theory, published by Heinrich Hertz in 1882, is one of the most fundamental theories in contact mechanics. The theory concerns about the contact of elastic bodies, and provides a mathematical model to describe the relationship between load, indentation depth, contact area and contact pressure. However, Hertz model should abide by assumptions of small indentation depth and contact region. Based on experiments, shallow depth indentation usually suffers from excessive noises, and it makes measurement inaccurate. Increasing the indentation depth is a way to avoid this problem. However, current studies did not point out the extension of large indentation in Hertz model. In this study, we concern influences of large indentation depth in Hertz model, and try to quantify the applied conditions.
This study utilizes finite element method (FEM) software to construct a two-dimensional axisymmetric model and compute results of the contact of elastic bodies, including contact of rigid sphere and elastic half-space, finite thickness elastic substrate and elastic spheres in different radius. It attempts to extend Hertz model in large indentation. Based on simulation, load-indentation relationship conforms to Hertz model as the ratio of indentation depth and radius of rigid sphere reaches 0.66 in the contact of rigid sphere and elastic half-space. Result of nanoindentation with polydimethylsiloxane (PDMS) has the same trend with simulation. Moreover, when the thickness of elastic substrate becomes 12 times of the radius of the rigid sphere, load-indentation relationship conforms to Hertz model until the ratio of indentation depth and sphere radius becomes one. In addition, contacts of rigid and elastic sphere with radius ratio of elastic and rigid sphere more than 10 have identical load-indentation relationship by simulation. When radius ratio of elastic and rigid sphere becomes 10, load-indentation relationship conforms to Hertz model. Besides, this study also focuses on different surface characteristic of samples in nanoindentation. In conclusion, as long as the indentation depth of nanoindentation lies in the applicable region mentioned above, you will obtain an accurate measurement without noise.


誌謝 I
中文摘要 II
ABSTRACT IV
目錄 V
圖目錄 VIII
符號表 XI
第一章 緒論 1
1.1 前言 1
1.2. 赫茲接觸理論簡介 2
1.3 聚二甲基矽氧烷簡介 3
1.4 研究動機與目的 4
1.5 本文內容與架構 6
第二章 文獻回顧與相關理論 7
2.1 文獻回顧 7
2.2 赫茲接觸理論之推導與基本假設 10
2.2.1 赫茲理論之基本假設 10
2.2.2 赫茲理論之推導 10
2.3 有限元素法之理論與推導 19
2.3.1 固體力學理論 19
2.3.2 有限元素分析流程 19
2.4 接觸演算法(CONTACT ALGORITHM) [108] 20
2.5 拉伸試驗(TENSILE TEST)[109], [110] 21
2.6 奈米壓痕試驗(NANOINDENTATION) [111] 21
2.5.1 球面型壓痕器[112] 22
2.5.2 奈米壓痕試驗的外在影響因子 22
2.7 接觸角量測 25
第三章 實驗方法與儀器設備 27
3.1 實驗樣本PDMS的製備 27
3.1.1 拉伸試驗樣本置備 28
3.2 拉伸試驗 31
3.3 PDMS表面之氧氣電漿改質 34
3.4 PDMS接觸角之量測 36
3.5 奈米壓痕試驗 38
3.6 PDMS黏彈性之測試 42
3.7 PDMS表面摩擦係數之量測 44
第四章 有限元素模型之建立 46
4.1 剛體球與彈性平板接觸模型之建立 46
4.2 有限元素模型驗證 48
4.3 剛體球與不同厚度彈性平板接觸模型之建立 49
4.4 剛體球與彈性球接觸模型之建立 49
第五章 結果與討論 52
5.1 PDMS材料係數之量測 52
5.2 PDMS黏彈性之測試結果 57
5.3 PDMS接觸角之量測與表面改質之結果 59
5.4 PDMS表面摩擦係數之量測結果 61
5.5 剛體球與彈性半無限域之接觸 63
5.6 剛體球與彈性半無限域接觸之有限元素模型驗證 69
5.7 剛體球與有限厚度的彈性平板之接觸 70
5.8 接觸表面間的摩擦力對赫茲理論的影響 72
5.9 PDMS之親疏水性對於奈米壓痕試驗的影響 74
5.10 剛體球與彈性球之接觸 76
5.11 彈性球與等大小之彈性球以及剛性平板之接觸 79
第六章 結論與未來展望 80
6.1 結論 80
6.2 未來展望 83
參考文獻 84
附錄一 鎳鈦合金之拉伸試驗與奈米壓痕試驗 100
附錄二 PDMS微米圓柱陣列之製作 104
附錄三 自行開發之壓痕器 106
附錄四 著作目錄 109


[1]W. Yan and F. D. Fischer, “Applicability of the Hertz contact theory to rail-wheel contact problems,” Arch. Appl. Mech. (Ingenieur Arch., vol. 70, no. 4, pp. 255–268, 2000.
[2]M. Pau, F. Aymerich, and F. Ginesu, “Distribution of contact pressure in wheel – rail contact area,” vol. 253, pp. 265–274, 2002.
[3]J. Ayasse and H. Chollet, “Determination of the wheel rail contact patch in semi-Hertzian conditions,” Veh. Syst. Dyn., vol. 43, no. 3, pp. 161–172, 2005.
[4]T. Telliskiv and U. Olofsson, “Contact mechanics analysis of measured wheel’rail profiles using the finite element method,” Proc. Inst. Mech. Eng. PART F-JOURNAL RAIL RAPID TRANSIT, vol. 215, no. 2, pp. 65–72, 2011.
[5]U. Olofsson and T. Telliskivi, “Wear, plastic deformation and friction of two rail steels - A full-scale test and a laboratory study,” Wear, vol. 254, no. 1–2, pp. 80–93, 2003.
[6]C. Hohmann, K. Schiffner, K. Oerter, and H. Reese, “Contact analysis for drum brakes and disk brakes using ADINA,” Comput. Struct., vol. 72, no. 1, pp. 185–198, 1999.
[7]M. Eriksson and S. Jacobson, “Tribological surfaces of organic brake pads,” Tribol. Int., vol. 33, no. 12, pp. 817–827, 2000.
[8]M. Eriksson, F. Bergman, and S. Jacobson, “On the nature of tribological contact in automotive brakes,” Wear, vol. 252, no. 1–2, pp. 26–36, 2002.
[9]A. Akay, “Acoustics of friction.,” J. Acoust. Soc. Am., vol. 111, no. 4, pp. 1525–1548, 2002.
[10]N. M. Kinkaid, O. M. O’Reilly, and P. Papadopoulos, “Automotive disc brake squeal,” J. Sound Vib., vol. 267, no. 1, pp. 105–166, 2003.
[11]M. O. T. Cole, P. S. Keogh, and C. R. Burrows, “Vibration control of a flexible rotor / magnetic bearing system subject to direct forcing and base motion disturbances,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 212, no. 7, pp. 535–546, 1998.
[12]P. S. Keogh and M. O. T. Cole, “Contact dynamic response with misalignment in a flexible rotor/magnetic bearing system,” vol. 128, no. April 2006, 2006.
[13]D. W. Childs and D. Kumar, “Dry-friction whip and whirl predictions for a rotor-stator model with rubbing contact at two locations,” J. Eng. Gas Turbines Power, vol. 134, no. 7, p. 072502, 2012.
[14]H. Rahnejat and R. Gohar, “The vibrations of radial ball bearings,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 199, pp. 181–193, 1985.
[15]J. Klein, E. Kumacheva, D. Mahalu, D. Perahla, and L. J. Fetters, “Reduction of frictional forces between solid surfaces bearing polymer brushes,” Nature, vol. 370, no. 25, pp. 634–636, 1994.
[16]N. Tandon and a Choudhury, “A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings,” Tribol. Int., vol. 32, no. 8, pp. 469–480, 1999.
[17]M. Tiwari, K. Gupta, and O. Prakash, “Effect of radial internal clearance of a ball bearing on the dynamics of a balanced horizontal rotor,” J. Sound Vib., vol. 238, no. 5, pp. 723–756, 2000.
[18]M. A. Wimmer, J. Loos, M. Heitkemper, and A. Fischer, “The acting wear mechanisms on metal-on-metal hip joint bearings: in vitro results,” Wear, vol. 250, pp. 129–139, 2001.
[19]N. Sawalhi and R. B. Randall, “Simulating gear and bearing interactions in the presence of faults. Part I. The combined gear bearing dynamic model and the simulation of localised bearing faults,” Mech. Syst. Signal Process., vol. 22, no. 8, pp. 1924–1951, 2008.
[20]A. P. Sanders and R. M. Brannon, “Assessment of the applicability of the Hertzian contact theory to edge-loaded prosthetic hip bearings,” J. Biomech., vol. 44, no. 16, pp. 2802–2808, 2011.
[21]R. Singh, D. R. Houser, and A. Kahraman, “Non-linear dynamic analysis of geared systems,” J. Sound Vib., vol. 142, pp. 49–75, 1990.
[22]P. Velex and M. Maatar, “A mathematical model for analyzing the influence of shape deviations and mounting errors on gear dynamic behaviour,” J. Sound Vib., vol. 191, no. 5, pp. 629–660, 1996.
[23]A. Flodin and S. Andersson, “Simulation of mild wear in spur gears,” Wear, vol. 207, pp. 16–23, 1997.
[24]R. G. Parker, S. M. Vijayakar, and T. Imajo, “Non-linear dynamic response of a spur gear pair: modelling and experimental comparisons,” J. Sound Vib., vol. 237, no. 3, pp. 435–455, 2000.
[25]V. K. Ambarisha and R. G. Parker, “Nonlinear dynamics of planetary gears using analytical and finite element models,” J. Sound Vib., vol. 302, no. 3, pp. 577–595, 2007.
[26]J. . R. Davis, Gear materials, Properties, and manufacture. 2005.
[27]W. M. Zhang and G. Meng, “Friction and wear study of the hemispherical rotor bushing in a variable capacitance micromotor,” Microsyst. Technol., vol. 12, no. 4, pp. 283–292, 2006.
[28]W. M. Zhang and G. Meng, “Numerical simulation of sliding wear between the rotor bushing and ground plane in micromotors,” Sensors Actuators, A Phys., vol. 126, no. 1, pp. 15–24, 2006.
[29]D. Tabor, The Hardness of Metals. 1951.
[30]Brinell, “Mémoire sur les épreuves à bille en acier,” Congrès Int. des Méthodes d’Essai des Matériaux Constr., vol. 2, pp. 83–94, 1901.
[31]S. P. Rockwell, “The testing of metals for hardness,” Trans. Am. Soc. Steel Treat., vol. 2, no. 1013, 1922.
[32]R. F. Bishop, R. Hill, and N. F. Mott, “The theory of indentation and hardness tests,” Proc. Phys. Soc., vol. 57, no. 3, pp. 147–159, 1945.
[33]R. Hill, B. Storakers, and A. B. Zdunek, “A theoretical study of the brinell hardness test,” Proceeding R. Soc. London Ser. A Math. Phys. Eng. Sci., vol. 423, no. 1865, pp. 301–330, 1989.
[34]A. E. Giannakopoulos, P.-L. Larsson, and R. Vestergaard, “Analysis of Vickers indentation,” Int. J. Solids Struct., vol. 31, no. 19, pp. 2679–2708, 1994.
[35]J. B. Stiehl, D. A. Dennis, R. D. Komistek, and P. A. Keblish, “In vivo kinematic analysis of a mobile bearing total knee prosthesis,” Clin. Orthop. Relat. Res., vol. 345, pp. 60–66, 1997.
[36]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science (80-. )., vol. 306, no. 5696, pp. 666–669, 2004.
[37]A. K. Geim and K. S. Novoselov, “The rise of graphene.,” Nat. Mater., vol. 6, no. 3, pp. 183–191, 2007.
[38]C.-M. Ho and Y.-C. Tai, “Micro-electro-mechanical-systems (MEMS) and fluid flows,” Annu. Rev. Fluid Mech., vol. 30, pp. 579–612, 1998.
[39]W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, vol. 7, no. 06. pp. 1564–1583, 1992.
[40]G. M. Pharr, W. C. Oliver, and F. R. Brotzen, “On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation,” J. Mater. Res., vol. 7, no. 03, pp. 613–617, Jan. 1992.
[41]E. G. Herbert, G. M. Pharr, W. C. Oliver, B. N. Lucas, and J. L. Hay, “On the measurement of stress–strain curves by spherical indentation,” Thin Solid Films, vol. 398–399, pp. 331–335, Nov. 2001.
[42]J.-J. Kim, Y. Choi, S. Suresh, and A. S. Argon, “Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature,” Science (80-. )., vol. 295, no. 5555, pp. 654–657, 2002.
[43]Y. Park and G. Pharr, “Nanoindentation with spherical indenters: finite element studies of deformation in the elastic–plastic transition regime,” Thin Solid Films, vol. 447, pp. 246–250, 2004.
[44]S. Basu, A. Moseson, and M. W. Barsoum, “On the determination of spherical nanoindentation stress–strain curves,” J. Mater. Res., vol. 21, no. 10, pp. 2628–2637, Mar. 2011.
[45]X. Huang and A. A. Pelegri, “Finite element analysis on nanoindentation with friction contact at the film/substrate interface,” Compos. Sci. Technol., vol. 67, no. 7–8, pp. 1311–1319, Jun. 2007.
[46]B. J. Briscoe, L. Fiori, and E. Pelillo, “Nano-indentation of polymeric surfaces,” J. Phys. D. Appl. Phys., vol. 31, no. 19, pp. 2395–2405, 1998.
[47]W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res., vol. 19, no. 01, pp. 3–20, Mar. 2004.
[48]K. Autumn, Y. A. Liang, S. T. Hsieh, W. Zesch, W. P. Chan, T. W. Kenny, R. Fearing, and R. L. Full, “Adhesive force of a single gecko foot-hair,” Nature, vol. 405, no. 6787, pp. 681–685, Jun. 2000.
[49]K. Autumn, M. Sitti, Y. A. Liang, A. M. Peattie, W. R. Hansen, S. Sponberg, T. W. Kenny, R. Fearing, J. N. Israelachvili, and R. J. Full, “Evidence for van der Waals adhesion in gecko setae,” Proc. Natl. Acad. Sci. U. S. A., vol. 99, no. 19, pp. 12252–12256, Sep. 2002.
[50]E. Arzt, S. Gorb, and R. Spolenak, “From micro to nano contacts in biological attachment devices,” Proc. Natl. Acad. Sci. U. S. A., vol. 100, no. 19, pp. 10603–6, Sep. 2003.
[51]G. Huber, S. N. Gorb, R. Spolenak, and E. Arzt, “Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy,” Biol. Lett., vol. 1, no. 1, pp. 2–4, Mar. 2005.
[52]C. Greiner, A. Del Campo, and E. Arzt, “Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload,” Langmuir, vol. 23, no. 7, pp. 3495–502, Mar. 2007.
[53]A. del Campo, C. Greiner, and E. Arzt, “Contact shape controls adhesion of bioinspired fibrillar surfaces,” Langmuir, vol. 23, no. 20, pp. 10235–43, Sep. 2007.
[54]K. D. Moller, Optics. 2007.
[55]H. Hertz, “Uber die Beriihrung fester elastischer Korper,” J. für die reine und Angew. Math., vol. 92, pp. 156–171, 1882.
[56]H. Hertz, “Uber die Beriihrung fester elastische Korper und uber die Harte,” Verhundlungen des Vereins zur Btfurderunq des Gewerbejleisses, 1882.
[57]K. Johnson, “One hundred years of Hertz contact,” Proc. Inst. Mech. Eng., vol. 196, pp. 363–378, 1982.
[58]K. L. Johnson, Contact Mechanics. 1985.
[59]H. Wu, S.-J. Sang, and Q. An, “A new vibration model for a bearing-rotor system considering a bearing structure,” Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn., vol. 225, no. 1, pp. 1–11, 2011.
[60]I. Gonzalez-Perez, J. L. Iserte, and A. Fuentes, “Implementation of Hertz theory and validation of a finite element model for stress analysis of gear drives with localized bearing contact,” Mech. Mach. Theory, vol. 46, no. 6, pp. 765–783, 2011.
[61]F. Abbasi, H. Mirzadeh, and A. A. Katbab, “Modification of polysiloxane polymers for biomedical applications: A review,” Polym. Int., vol. 50, no. 12, pp. 1279–1287, 2001.
[62]H. Makamba, J. H. Kim, K. Lim, N. Park, and J. H. Hahn, “Surface modification of poly(dimethylsiloxane) microchannels,” Electrophoresis, vol. 24, no. 21, pp. 3607–3619, 2003.
[63]J. C. McDonald and G. M. Whitesides, “Poly(dimethylsiloxane) as a material for fabricating microfluidic devices,” Acc. Chem. Res., vol. 35, no. 7, pp. 491–499, 2002.
[64]D. C. Duffy, J. C. McDonald, O. J. a Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem., vol. 70, no. 23, pp. 4974–4984, 1998.
[65]J. C. Mcdonald, D. C. Duffy, J. R. Anderson, and D. T. Chiu, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis, vol. 21, pp. 27–40, 2000.
[66]H. M. Lepper and R. M. Wright, “Elastomers in medicine,” Rubber Chem. Technol., vol. 56, no. 3, pp. 523–556, 1983.
[67]C. R. McMillin, “Elastomers for biomedical applications,” Rubber Chem. Technol., vol. 67, no. 3, pp. 417–446, 1994.
[68]K. J. Quinn and J. M. Courtney, “Silicones as biomaterials,” Br. Polym. J., vol. 20, no. 1, pp. 25–32, 1988.
[69]K. Polmanteer, “Silicone-rubber, its development and technological progress,” Rubber Chem. Technol., vol. 61, no. 3, pp. 470–502, 1988.
[70]T. Devanathan and K. A. Young, “Effect of postcuring on hemo-compatibility of silicone rubber.,” Biomater. Med. Devices. Artif. Organs, vol. 9, no. 3, pp. 225–230, 1981.
[71]K. Glasmästar, J. Gold, A. S. Andersson, D. S. Sutherland, and B. Kasemo, “Silicone transfer during microcontact printing,” Langmuir, vol. 19, no. 13, pp. 5475–5483, 2003.
[72]A. Bernard, J. P. Renault, B. Michel, H. R. Bosshard, and E. Delamarche, “Microcontact printing of proteins,” Adv. Mater., vol. 12, no. 14, pp. 1067–1070, 2000.
[73]K. Yahagi, “Silicones as conditioning agents in shampoos,” J. Soc. Cosmet. Chem., vol. 43, no. 5, pp. 275–284, 1992.
[74]F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromechanics Microengineering, vol. 18, no. 6, p. 065008, Jun. 2008.
[75]M. Liu, J. Sun, and Q. Chen, “Influences of heating temperature on mechanical properties of polydimethylsiloxane,” Sensors Actuators A Phys., vol. 151, no. 1, pp. 42–45, Apr. 2009.
[76]F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sensors Actuators A Phys., vol. 151, no. 2, pp. 95–99, Apr. 2009.
[77]T.-S. Chou, “Characteristics and uniformity improvement of Ga-doped ZnO thin films deposited by atmospheric pressure plasma jet,” 2014.
[78]J. L. Vossen, “Transparant conducting films,” Phys. Thin Film, vol. 9, p. 164, 1977.
[79]李玉華, “透明導電薄膜及其應用,” 科儀新知, vol. 12, no. 1, pp. 94–102, 1990.
[80]M. Debnath and P. Chatterjee, “Effect of an insulating interfacial layer at the metal (or TCO) / semiconductor front contact on the performance of a-Si:H solar cells,” J. Non. Cryst. Solids, vol. 181, no. 3, pp. 301–309, 1995.
[81]S.-H. Kim, J.-Y. Hwang, J.-H. Kim, Y.-H. Kim, D.-H. Kang, S.-K. Lee, J.-W. Han, C.-H. Ok, D.-S. Seo, and E.-S. Kim, “Alignment capabilities and EO performances of VA-LCD using transparent conductive Al-doped ZnO films,” Mol. Cryst. Liq. Cryst., vol. 475, pp. 23–32, 2007.
[82]W. Jia, B. Fan, H. Jiang, Y. Liu, B. Zhang, Y. Xian, S. Huang, Z. Zheng, Z. Wu, K. Tong, R. Wong, and G. Wang, “High power GaN-based LEDs with nano-structured Ga-doped ZnO (GZO) transparent conductive layer (TCL),” Display, Solid-State Light. Photovoltaics, Optoelectron. Energy II, vol. 7991, p. 799105, 2010.
[83]P. S. Pa, “Design of an oval-form cathode for the precision etching process of e-paper surface,” Mater. Des., vol. 30, no. 7, pp. 2763–2768, 2009.
[84]S. I. Kim, S. H. Cho, S. R. Choi, M. C. Oh, J. H. Jang, and P. K. Song, “Crystallization and electrical properties of ITO:Ce thin films for flat panel display applications,” Thin Solid Films, vol. 517, no. 14, pp. 4061–4064, 2009.
[85]M. G. Zhang, Y. P. Cao, G. Y. Li, and X. Q. Feng, “Spherical indentation method for determining the constitutive parameters of hyperelastic soft materials,” Biomech. Model. Mechanobiol., vol. 13, no. 1, pp. 1–11, 2014.
[86]J. Boussinesq, “Application des potentials à l’etude de l''équilibre et du mouvement des solides élastiques,” Paris: Gauthier-Villars, pp. 45–108, 1885.
[87]A. Persson, On the stress distribution of cylindrical elastic bodies in contact. 1964.
[88]L. E. Goodman and L. M. Keer, “The contact stress problem for an elastic sphere indenting an elastic cavity,” Int. J. Solids Struct., vol. 1, no. 4, pp. 407–415, 1965.
[89]M. T. Huber, “Zur theorie der beriihrung fester elastische korper,” Ann. Phys., vol. 14, p. 153, 1904.
[90]M. T. Huber and S. Fuchs, “Spannungsverleitung bei der beriihrung zweier elastische zylinder,” Phys. Zeitschrift, vol. 15, p. 298, 1914.
[91]S. P. Timoshenko and J. N. Goodier, Theory of Elasticity. Mcgraw-Hill College, 1951.
[92]H. R. Thomas and V. a. Hoersch, “Stresses due to the pressure of one elastic solid upon another with special reference to railroad rails,” Univ. Illinois Eng. Exp. Stn. Bull., vol. 212, no. I, 1930.
[93]R. M. Davis, “The determination of static and dynamic yield stresses using a steel ball,” Proceeding R. Soc. London Ser. A Math. Phys. Eng. Sci., vol. 197, no. 1050, pp. 416–432, 1949.
[94]H. I. Andrews, “The contact between a locomotive driving wheel and the rail,” Wear, vol. 2, no. 6, pp. 468–484, 1959.
[95]H. I. Muskhelishvili, Some basic problems in the mathematical theory of elasticity. 1953.
[96]E. M’Ewen, “XLI. Stresses in elastic cylinders in contact along a generatrix (including the effect of tangential friction),” London, Edinburgh, Dublin Philos. Mag. J. Sci., vol. 40, no. 303, pp. 454–459, 2010.
[97]H. Poritsky, “Stresses and deflections of cylindrical bodies in contact with application to contact of gears and locomotive wheels,” J. Appl. Mech. ASME, vol. 17, no. 2, pp. 191–201, 1950.
[98]J. Smith and C. K. Liu, “Stresses due to tangential and normal loads on an elastic solid with application to some contact stress problems,” J. Appl. Mech. ASME, vol. 20, no. 2, pp. 157–166, 1953.
[99]G. M. Hamilton and L. E. Goodman, “The stress field created by a circular sliding contact,” J. Appl. Mech. ASME, vol. 33, p. 371, 1966.
[100]M. D. Bryant and L. M. Keer, “Rough contact between elastically and geometrically simmilar curved bodies,” J. Appl. Mech. ASME, vol. 49, p. 345, 1982.
[101]A. Sackfield and D. A. Hills, “Some useful results in the classical Hertz contact problem,” J. Strain Anal. Eng. Des., vol. 18, no. 2, pp. 101–105, 2007.
[102]C. Cattaneo, “Sul contatto di corpi elastici,” Accad. dei Lincei, vol. 27, pp. 342–348, 434–436, 474–478, 1938.
[103]Mindlin, “Compliance of elastic bodies in contact,” J. Appl. Mech. ASME, vol. 17, p. 259, 1949.
[104]R. D. Mindlin and H. Deresiewicz, “Elastic spheres in contact under varying oblique forces,” J. Appl. Mech. ASME, vol. 20, no. 3, pp. 327–344, 1953.
[105]H. Deresiewicz, “Oblique contact of non-spherical bodies,” J. Appl. Mech. ASME, vol. 25, p. 653, 1951.
[106]L. E. Goodman, A Review of Progress in Analysis of Interfacial Slip Damping. 1960.
[107]ANSYS Theory Reference 12.0. SAS IP, Inc. 2009.
[108]Springer Handbook of Materials Measurement Methods. 2006.
[109]E. . Hart, “Theory of the tensile test,” Acta Metall., vol. 15, no. 2, pp. 351–355, 1967.
[110]A. C. Fischer-Cripps, Nanoindentation. Springer New York, 2011.
[111]J. S. Field and M. V. Swain, “A simple predictive model for spherical indentation,” J. Mater. Res., vol. 8, no. 02, pp. 297–306, 1993.
[112]N. M. Jennett and J. Meneve, “Depth sensing indentation of thin hard films: A study of modulus measurement sensitivity to indentation parameters,” Mater. Res. Soc. Proc., vol. 522, pp. 239–244, 1998.
[113]“Hysitron Inc.” .
[114]I. K. Lin, K. S. Ou, Y. M. Liao, Y. Liu, K. S. Chen, and X. Zhang, “Viscoelastic characterization and modeling of polymer transducers for biological applications,” J. Microelectromechanical Syst., vol. 18, no. 5, pp. 1087–1099, 2009.
[115]Y.-P. Cao, M.-G. Zhang, and X.-Q. Feng, “Indentation method for measuring the viscoelastic kernel function of nonlinear viscoelastic soft materials,” J. Mater. Res., vol. 28, no. 06, pp. 806–816, Feb. 2013.
[116]Z. Wang, A. A. Volinsky, and N. D. Gallant, “Nanoindentation study of polydimethylsiloxane elastic modulus using Berkovich and flat punch tips,” J. Appl. Polym. Sci., vol. 132, no. 5, p. n/a–n/a, Feb. 2015.
[117]F. P. Beer, E. R. Johnston, and J. T. DeWolf, Mechanics of Materials. 2004.
[118]J. A. Watson, C. L. Brown, S. Myhra, and G. S. Watson, “Two-dimensional stick-slip on a soft elastic polymer: pattern generation using atomic force microscopy,” Nanotechnology, vol. 17, no. 10, pp. 2581–2589, 2006.
[119]K. Autumn and A. A. M. Peattie, “Mechanisms of adhesion in geckos,” Integr. Comp. Biol., vol. 1090, no. 6, pp. 1081–1090, Dec. 2002.
[120]E. Dintwa, E. Tijskens, and H. Ramon, “On the accuracy of the Hertz model to describe the normal contact of soft elastic spheres,” Granul. Matter, vol. 10, no. 3, pp. 209–221, 2008.
[121]W. Yan, Q. Sun, X.-Q. Feng, and L. Qian, “Determination of transformation stresses of shape memory alloy thin films: A method based on spherical indentation,” Appl. Phys. Lett., vol. 88, no. 24, p. 241912, 2006.
[122]W. R. Hansen and K. Autumn, “Evidence for self-cleaning in gecko setae.,” Proc. Natl. Acad. Sci. U. S. A., vol. 102, no. 2, pp. 385–9, Jan. 2005.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top