跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 09:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李孟修
研究生(外文):Meng-Shiou Lee
論文名稱:線上雷射功率量測與穩定系統開發
論文名稱(外文):Development of On-line Laser Power Monitoring and Stabilizing System
指導教授:李貫銘李貫銘引用關係
指導教授(外文):Kuan-Ming Li
口試委員:楊宏智郭鴻飛劉致奚
口試委員(外文):Hong-Tsu YoungHung-Fei KuoChi-Hsi Liu
口試日期:2015-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:88
中文關鍵詞:雷射材料加工線上量測CMOS相機回授控制
外文關鍵詞:Laser material processingOn-line monitoringCMOS cameraFeedback control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
自雷射被發明以來,雷射已經被應用在許多領域,如:材料加工、通訊、量測、生醫工程、國防工業等等。在雷射材料加工的過程中,雷射輸出功率是很重要的一個參數,但雷射加工時間短,而目前現有的雷射功率計因為反應時間過長,無法在短時間內精確量測出雷射的功率。為了進行雷射功率即時監測,本研究利用CMOS(Complementary metal-oxide-semiconductor)工業相機進行雷射功率線上量測系統的開發,期望能夠在雷射加工時,達到即時量測雷射功率的目的;並且針對雷射功率易受環境溫度影響而功率輸出不穩定的現象,以回授控制(Feedback control)的方式進行雷射功率的穩定控制。
本研究將經過分光、減光的雷射光束以CMOS工業相機直接擷取光點影像,計算影像中的雷射光點亮度值,利用曲線配適(Curve fitting)的方式推算雷射功率。得到即時雷射功率值後,計算量測功率值與預設功率值的誤差,以控制雷射Q開關(Q-switch)Duty time的方式,利用PID控制器進行回授控制,達到雷射功率輸出的穩定控制。
由實驗結果可知,本研究系統在連續量測模式下,平均量測誤差僅約3%,反應時間比起熱電堆式雷射功率計至少縮短3.6秒以上;利用觸發訊號的觸發量測模式下,使CMOS相機能夠同步擷取間歇式的加工出光,進行同步量測,平均量測誤差小於3%,且能夠量測最短20毫秒(Millisecond)的出光。
回授控制功能中,PID控制器能夠在1秒以內補償雷射系統之功率誤差,且過衝不到3%、幾乎沒有穩態誤差。在鍍銅PCB基板的鑽孔加工實驗中,在脈衝頻率30kHz下鑽孔,控制器能夠將孔徑長軸因功率下降的誤差由38.4%改善至1.8%,長寬比誤差由20%降至5%。在50kHz下鑽孔,控制器能夠將孔徑長軸因功率下降的誤差由100%改善至22.3%,長寬比誤差由100%降至5.8%。


Since the laser was invented, laser has been applied in many fields such as material processing, communication, measurement, biomedical engineering, defense industries and etc. Laser power is an important parameter in laser material processing. However, since the response time of current laser power meters is too long, they cannot measure laser power accurately in a short time. To monitor the laser power in laser material processing, this study utilize a CMOS(Complementary metal-oxide-semiconductor) camera to develop an on-line laser power monitoring system. Also, this study applies a feedback control to stabilize laser power in order to solve the problem that laser power is easily affected by the environment temperature.
In this study, CMOS camera captures images of incident laser beam after it is split and attenuated. By comparing the average brightness of the beam spots and measurement results from laser power meter, laser power can be estimated. Moreover, laser power is stabilized by a PID controller which controls the “Duty time” of the laser Q-switch.
Under continuous measuring mode, the average measuring error is about 3% in average, and the response time is at least 3.6 second shorter than thermopile power meters; under trigger measuring mode which enables the CMOS camera to synchronize with intermittent laser output, the average measuring error is less than 3%, and the shortest response time is 20 millisecond.
For power stabilizing function, PID controller can fully compensate power disturbances within 1 second, the overshoot is less than 3%, and no steady-state error is noticed. In the PCB drilling experiments, the PID controller is able to reduce the error of major axis lengths of drilled holes from 38.4% to 1.8% and the error of aspect ratio from 20% to 5% while drilling at 30 kHz PRF under power disturbance. While drilling at 50 kHz PRF, PID controller reduces the error of major axis lengths from 100% to 77.7% and the error of the aspect ratio from 100% to5.8% under power disturbance.


目錄
口試委員會審定書…………………………………………………I
誌謝…………………………………………………………………II
中文摘要……………………………………………………………III
英文摘要……………………………………………………………IV
目錄…………………………………………………………………V
圖目錄………………………………………………………………VIII
表目錄………………………………………………………………XI
第一章 緒論 1
1.1. 研究背景與動機 1
1.2. 研究目的 2
1.3. 論文架構 3
第二章 文獻回顧 4
2.1. 簡介 4
2.2. 雷射功率計概述 4
2.2.1. 光電二極體式 (Photodiode) 4
2.2.2. 熱電堆式 (Thermopile) 5
2.2.3. 焦電材料式 (Pyroelectric sensor) 6
2.2.4. 小結 7
2.3. 雷射功率控制方式 8
2.3.1. 激發電流 (Pumping current) 8
2.3.2. PEC控制 (Pulse energy control) 9
2.3.3. Duty time控制 (Duty time control) 11
2.4. 雷射線上量測與加工監控之文獻回顧 12
2.4.1. 雷射線上量測研究 13
2.4.2. 雷射線上加工監控研究 16
2.5. CMOS(Complementary metal-oxide semiconductor)相機 20
2.6. 小結 21
第三章 研究方法 23
3.1. 簡介 23
3.2. 線上功率量測 24
3.2.1. 光路設計 24
3.2.2. 相機參數 26
3.2.3. 量測環境 27
3.2.4. 雷射光點區域與功率計算 29
3.2.5. 同步擷取與影像處理流程 33
3.3. 功率穩定控制 34
3.3.1. 功率控制流程 36
3.3.2. PID控制器設計 36
3.4. 小結 38
第四章 實驗設備與規劃 39
4.1. 簡介 39
4.2. 實驗架構與設備 39
4.3. 實驗裝置建立 51
4.4. 實驗規劃 53
4.4.1. 線上功率量測實驗設計 54
4.4.2. 功率穩定控制實驗設計 55
4.5. 小結 58
第五章 實驗結果分析與討論 59
5.1. 簡介 59
5.2. 線上功率量測實驗 59
5.2.1. 實驗數據與分析 60
5.2.2. 結果討論 66
5.3. 功率穩定控制實驗 68
5.3.1. 實驗數據與分析 68
5.3.2. 結果討論 78
5.4. 小結 82
第六章 結論與未來展望 83
6.1. 結論 83
6.2. 未來展望 84
參考文獻 86



[1]A. N. Gail Overton, and Conard Holton. (2015, May 17). Laser Marketplace 2014: Lasers forge 21st century innovations. Available: http://www.laserfocusworld.com/articles/print/volume-50/issue-01/features/laser-marketplace-2014-lasers-forge-21st-century-innovations.html
[2]胡仕儀, "2012年景氣渾沌籠罩全球雷射產業與市場," 光連:光電產業與技術情報, vol. 103, pp. 21-25, 2013.
[3]林彥穎、黃呈豐. (2015, June 4). 全球雷射產業與台灣雷射加工產學合作. Available: http://www.lasertech.tw/news_detail.php?newsId=IyQlKiYlNCVeJComKg==
[4]H. Lara, "Navigating the features and limitations of laser power and energy meters," Laser Focus World, vol. 39, pp. 137-141, 2003.
[5]R. S. Quimby, Photonics and Lasers: An Introduction: John Wiley & Sons, 2006.
[6]S. Porter, "A brief guide to pyroelectric detectors," Ferroelectrics, vol. 33, pp. 193-206, 1981.
[7]P. Ophir. (2015, May 3). Power meters | Laser measurement. Available: http://www.ophiropt.com/laser-measurement
[8]P. I. I. Inc., Model DC Series Laser Installation and Operation Manual: Photonics Industries International Inc., 2011.
[9]E. Kannatey-Asibu Jr, Principles of Laser Materials Processing: John Wiley & Sons, 2009.
[10]W. Koechner, Solid-State Laser Engineering, 6th ed.: Springer Science & Business Media, 2006.
[11]V. A. Seguin and P. P. Chenausky, "Acousto-optically Q-switched CO2 laser," United States Patent 8,050,306, 2011.
[12]W. M. Steen, K. G. Watkins, and J. Mazumder, Laser Material Processing, 4th ed.: Springer Science & Business Media, 2010.
[13]T. Purtonen, A. Kalliosaari, and A. Salminen, "Monitoring and adaptive control of laser processes," Physics Procedia, vol. 56, pp. 1218-1231, 2014.
[14]Y. Kawahito, T. Ohnishi, and S. Katayama, "In-process monitoring and feedback control for stable production of full-penetration weld in continuous wave fibre laser welding," Journal of Physics D: Applied Physics, vol. 42, p. 085501, 2009.
[15]G. Hasnain and K. Tai, "Self-monitoring semiconductor laser device," United States Patent 5,136,603, 1992.
[16]S. E. Swirhun and W. E. Quinn, "Integration of laser with photodiode for feedback control," United States Patent 5,606,572, 1997.
[17]L. Li and W. M. Steen, "In-process clad quality monitoring using optical method," in The Hague''90, 12-16 April, 1990, pp. 89-100.
[18]G. Lim and W. Steen, "Measurement of the temporal and spatial power distribution of a high-power CO 2 laser beam," Optics & Laser Technology, vol. 14, pp. 149-153, 1982.
[19]L. I. Green, "On-line beam performance monitoring to improve laser reliability and performance," in High-Power Lasers and Applications, 2002, pp. 12-23.
[20]L. I. Green, G. L. Herrit, and H. E. Reedy, "New method for in-line beam profiling high-power CO 2 lasers with an IR camera-based system," in Proceedings of SPIE, 2003, pp. 97-104.
[21]J. N. Caron, G. P. DiComo, A. C. Ting, and R. P. Fischer, "Application of a scattered-light radiometric power meter," Review of Scientific Instruments, vol. 82, p. 043101, 2011.
[22]H. R. Li L, Steen WM, "In-process laser power monitoring and feedback control," in Proceedings of the 4th International Conference on Lasers in Manufacturing (LIM4), Birmingham, UK, 1987, pp. 165-175.
[23]H. Tönshoff and L. Overmeyer, "Process control systems in laser materials processing," Optical and Quantum Electronics, vol. 27, pp. 1439-1447, 1995.
[24]J. Hofman, B. Pathiraj, J. van Dijk, D. de Lange, and J. Meijer, "A camera based feedback control strategy for the laser cladding process," Journal of Materials Processing Technology, vol. 212, pp. 2455-2462, 2012.
[25]R. L. Melcher and S. H. Wen., "Laser drilling system utilizing photoacoustic feedback," United States Patent 4,504,727, 1985.
[26]W. H. Kasner, J. F. Roach, and V. A. Toth, "Controlled depth laser drilling system," United States Patent 4,789,770, 1988.
[27]J. E. Duffin, "Laser drilling with optical feedback," United States Patent 6,201,214, 2001.
[28]O. Yadid-Pecht and R. Etienne-Cummings, CMOS imagers: from phototransduction to image processing: Springer Science & Business Media, 2004.
[29]G. F. Marshall and G. E. Stutz, Handbook of Optical and Laser Scanning: Marcel Dekker, Inc., 2004.
[30]Thorlabs. (2015, May 4). Thorlabs, Inc. - Your Source for Fiber Optics, Laser Diodes, Optical Instrumentation and Polarization Measurement & Control. Available: http://www.thorlabs.com/index.cfm
[31]R. C. Dorf and R. H. Bishop, Modern Control Systems, 12th ed.: Pearson, 2011.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top