跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 04:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周沛恩
研究生(外文):Pei-En Chou
論文名稱:高頻矽基超音波噴嘴之封裝
論文名稱(外文):Packaging of High Frequency Silicon-Based Ultrasonic
指導教授:周元昉
口試委員:莊嘉揚蔡曜陽
口試日期:2015-01-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:69
中文關鍵詞:超音波有限元素法3D列印夾具基筏熱變形
外文關鍵詞:UltrasonicNozzleFEM3D PrintingHolderRaftThermal deformation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文包含兩部分的研究:(1)矽底高頻霧化器(2)霧化器支架(Atomizer’s holder)。研究目的為改善前代霧化器把手(Handle)易損壞的缺點,設計新一代300kHz的霧化器,並搭配3D列印製造的新設計支架套裝組合起來一並使用。
論文的第一部分探討300kHz矽底高頻霧化器的分析、設計、模擬及實際微系統(MEMS)製造的過程。噴嘴主要由壓電驅動部分和兩節噴嘴串聯的共振部分組成。首先藉由簡化分析噴嘴的一維運動方程,設計出噴嘴形狀的概廓。再來使用有限元素法的理論基礎,配合有限元素軟體的使用,逐部份模擬後再合起來模擬三維實際的振動情形,討論並逐步修改除噴嘴輪廓外各部分的形狀以避開不理想的振動模態。設計出噴嘴後,再來實際進行微系統製成經有一系列曝光、顯影、對準等過程後製作出新一代的噴嘴。
論文的第二部分探討3D列印夾具的設計和製作,並組裝上的考量。3D列印的部分,探討如何改善列印出的夾具因熱收縮所造成厚度不均勻性的問題,並提出三型態層的基筏結構 (Three-layer-type structure of raft)及熱收縮更正表;組裝的部分,則考慮到探針及螺絲的選用。最後則把全部組裝起來。


This thesis includes two parts: (1) high frequency silicon-based ultrasonic nozzles and (2) atomizer’s holder. Our purpose is to improve the weak “handle” parts of the previous version of nozzles, to design the new 300 kHz atomizers, and to assemble them with the new holders’ package.
The first part presents the design of analysis, simulation, and actually MEMS fabrication of 300kHz high frequency silicon-based ultrasonic nozzles. The new version of nozzles contains two parts: the piezoelectric driving part and the resonant part which is made of two cascaded nozzles. An one dimensional simplified model is analyzed first, and its equation of motion is worked out to obtain the contour of horn shape. Next, finite element analysis (FEM) 3-D simulation is used to calculate resonant frequencies of each part of 3D model of nozzle. All parts are first simulated individually, and then put together to simulate again. After several fine-tune adjustments, we get the final geometry of nozzles without unideal modes of vibration too near the working frequency, 300 kHz. Getting the physical modal of nozzle, the nozzle is then produced through a series of MEMS-based microfabrication process.
The second part deals with the design, production, and assembling of 3D printing nozzle’s chunking appliance, the Holder. A three-layer-type structure of raft for 3D printing of acrylonitrile butadiene styrene is proposed to discuss how to reduce the thickness inhomogeneity resulted from thermal contraction, and a correction table of thermal contraction is mentioned. As for assembling part, we discuss the selection and usage of pins and screws, and finally all parts are assembled together.


CONTENTS

口試委員會審定書..............................................................#
誌謝..........................................................................1
中文摘要......................................................................2
ABSTRACT......................................................................3
CONTENTS......................................................................4
LIST OF FIGURES...............................................................6
LIST OF TABLES................................................................8

Chapter 1 Introduction........................................................9
1.1 Introduction to High Frequency Silicon-Based Ultrasonic Nozzles..........9
1.2 Introduction to Design of Atomizer Holder and 3D Printing Fused
Deposition Manufacturing Technology.......................................13

Chapter 2 High Frequency Silicon-Based Ultrasonic Nozzles.....................15
2.1 Model Derivation and Shape Design of Ultrasonic Amplifier.................15
2.2 Design of monocrystalline silicon atomizer................................19
2.3 Production Process of Nozzles.............................................30
2.4 Simulation Results and Discussion.........................................31

Chapter 3 3D Printing Process Parameter Design................................34
3.1 Previous research.........................................................34
3.2 Implementation of 3D Printing.............................................35

Chapter 4 Atomizer’s Holder..................................................41
4.1 Geometry Design of Atomizer’s Holder.....................................41
4.2 3D Printing Production Process of Holders.................................44
4.3 Assembling of Nozzle Package..............................................51
4.4 Discussion................................................................57
4.5 Conclusion................................................................58

Chapter 5 Conclusion and Suggestion...........................................59

REFERENCE.....................................................................61
Appendix A Parameter Setting of 3D Printer....................................63


[1] L. Y. Yeo, J. R. Friend, M. P. McIntosh, E. N. Meeusen, and D. A. Morton, "Ultrasonic nebulization platforms for pulmonary drug delivery," Expert opinion on drug delivery, Vol. 7, pp. 663-679, 2010.
[2] S. C. Tsai, Y. L. Song, T. K. Tseng, Y. F. Chou, B. Chen, and C. S. Tsai, "High-frequency, silicon-based ultrasonic nozzles using multiple Fourier horns," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, Vol. 51, NO. 3, pp. 277-285, 2004.
[3] R. J. Lang, "Ultrasonic atomization of liquids," The journal of the acoustical society of America, Vol. 34, NO. 1,pp. 6-8, 1962.
[4] D. Sindayihebura, M. Dobre, and L. Bolle, "Experimental study of thin liquid film ultrasonic atomization," in 4th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, pp. 1249-1256, 1997.
[5] Sono-Tek Official Website. Available: http://www.sono-tek.com/
[6] E. Eisner, "Design of sonic amplitude transformers for high magnification," The Journal of the Acoustical Society of America, Vol. 35, NO. 9, pp. 1367-1377, 1963.
[7] 曾永澔, 複合材料之超音波鑽孔加工, 機械工程學研究所, 國立台灣大學, 1987.
[8] A. Lal and R. M. White, "Micromachined silicon ultrasonic atomizer," in Ultrasonics Symposium, 1996. Proceedings., 1996 IEEE, pp. 339-342, 1996.
[9] Y. L. Song, C. H. Cheng, L.-M. Chang, C.-F. Lee, and Y. F. Chou, "Polycarbonate nanoparticles spray coated on silicon substrate using micro-electromechanical-systems-based high-frequency ultrasonic nozzle," Applied Acoustics, Vol. 72, Iss. 12, pp. 949-952, 2011.
[10] M.-L. Li, L.-C. Lee, Y.-R. Cheng, C.-H. Kuo, Y.-F. Chou, Y.-S. Chen, et al., "A Novel Aerosol-Mediated Drug Delivery System for Inner Ear Therapy: Intratympanic Aerosol Methylprednisolone Can Attenuate Acoustic Trauma," Biomedical Engineering, IEEE Transactions on, Vol. 60, NO. 9, pp. 2450-2460, 2013.
[11] 周沛恩, 徐瑞美, 周元昉, "常壓電漿輔助CVD之前驅物霧化噴嘴," 中國機械工程學會第三十屆全國學術研討會論文集, 宜蘭, 2013.
[12] 宋昱霖, 奈米顆粒製程之噴霧熱解及矽底高頻噴霧器, 物理研究所, 臺灣大學, 2005.
[13] S. Upcraft and R. Fletcher, "The rapid prototyping technologies," Assembly Automation, Vol. 23, NO. 4, pp. 318-330, 2003.
[14] E. Britannica. Acrylonitrile-butadiene-styrene copolymer (ABS). Available: http://global.britannica.com/EBchecked/topic/4259/acrylonitrile-butadiene-styrene-copolymer-ABS
[15] T. Osswald, Understanding Polymer Processing, pp. 14-19, 2011.
[16] 周元昉, "矽的機械性質," 微系統導論課程講義, 課號522U4170, 機械工程學系, 臺灣大學, 1995.
[17] M. A. Hopcroft, W. D. Nix, and T. W. Kenny, "What is the Young''s Modulus of Silicon?," Microelectromechanical Systems, Journal of, Vol. 19, NO. 2, pp. 229-238, 2010.
[18] N. Klingbeil, J. Beuth, R. Chin, and C. Amon, "Residual stress-induced warping in direct metal solid freeform fabrication," International Journal of Mechanical Sciences, Vol. 44, pp. 57-77, 2002.
[19] R. Ong, J. L. Beuth, and L. Weiss, "Residual stress control issues for thermal deposition of polymers in SFF processes," Proceedings of 2000 Solid Freeform Fabrication Symposium, pp. 209-218, Austin, TX, USA, 2000.
[20] O. Es-Said, J. Foyos, R. Noorani, M. Mendelson, R. Marloth, and B. Pregger, "Effect of layer orientation on mechanical properties of rapid prototyped samples," Materials and Manufacturing Processes, vol. 15, pp. 107-122, 2000.
[21] C. Ziemian, M. Sharma, and S. Ziemian, "Anisotropic mechanical properties of ABS parts fabricated by fused deposition modelling," Mechanical Engineering. Intech, pp. 159-180, 2012.
[22] T.-M. Wang, J.-T. Xi, and Y. Jin, "A model research for prototype warp deformation in the FDM process," The International Journal of Advanced Manufacturing Technology, Vol. 33, pp. 1087-1096, 2007.
[23] Y. Zhang and K. Chou, "A parametric study of part distortions in fused deposition modelling using three-dimensional finite element analysis," Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 222, pp. 959-968, 2008.
[24] A. K. Sood, R. Ohdar, and S. Mahapatra, "Parametric appraisal of mechanical property of fused deposition modelling processed parts," Materials & Design, Vol. 31, pp. 287-295, 2010.
[25] (2010). Some corners like it hot. Available: http://hydraraptor.blogspot.tw/2010/09/some-corners-like-it-hot.html
[26] 周沛恩, 徐瑞美, 周元昉, "FDM 3D列印ABS厚度不均勻性的改善," 中國機械工程學會第31屆全國學術研討會論文集, 台中, 2014.
[27] 中國探針股份有限公司, 探針尺寸圖, 2005.
http://www.pccp.com.tw/components/com_pogopin/Pogopin_PDF/N001M2.pdf
[28] ReplicatorG Official Website. Available: http://replicat.org/


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top