跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 02:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃崇軒
研究生(外文):Chung-Husan Huang
論文名稱:助聽器附著於耳膜後中耳頻率響應函數之研究
論文名稱(外文):Research on frequency response function of the middle ear after hearing aid attached to the eardrum
指導教授:周元昉
指導教授(外文):Yuan-Fang Chou
口試委員:洪振發王立昇
口試委員(外文):Hong-Zhen FaLi-Sheng Wang
口試日期:2015-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:68
中文關鍵詞:聲音傳遞中耳頻率響應函數助聽器
外文關鍵詞:Sound transmissionMiddle earFrequency response functionHearing aid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文首先由人類聽小骨的剛體模型和韌帶與肌腱等的彈簧模型建立中耳的無阻尼數學模型,接著推導出中耳之運動方程式後解出無阻尼之固有頻率和振形,利用這些固有頻率和振形加入各個模態之阻尼比後推導出人類中耳的頻率響應函數,將調校模態阻尼比的結果和文獻上的實驗數據比較後獲得各個模態適合的阻尼比,如此可獲得符合中耳動態特性的模態參數以及頻率響應函數。

接著將已研發之光電式耳膜附著助聽器的數學模型和所獲得之中耳參數組合。利用次結構合成法將助聽器和中耳之頻率響應函數合成得到助聽器施力傳至內耳位移的頻率響應函數,最後將力和位移的關係換算成電流和位移之關係,即可據以設定助聽器需提供多少電流來達成聽力補償之效果。


This study created a 3D multi-body model of human middle ear structure. First, the ossicels was considered a rigid body and soft tissues was considered a composition of linear spring. Secondly, we ignored damping effect and external force to derive the equation of motions of whole system. Then solved eigenvalue problem and using these natural frequencies、mode shape and damping ratio of each mode, so we can derive the frequency response function of the middle ear. Finally, we tuned the damping ratio of each mode to fit the frequency response function from paper’s experimental data, as a result, we got the frequency response function of the middle ear by theoretical analysis.

We used substructure synthesis method to combine the frequency response function of the middle ear and the frequency response function of hearing aid. We obtained the purpose of this study by combining the frequency response function of the two structures. Then, by transforming the electromagnetic force to current hearing aid, we got the frequency response function between the electromagnetic force and current. According to this function we can achieve the settings of hearing aid.


中文摘要 I
ABSTRACT II
目錄 III
表目錄 V
圖目錄 VI
第一章 緒論 1
1.1研究動機 1
1.2 文獻回顧 2
1.3本文內容 4
第二章 中耳之數學模型 6
2.1人類之中耳 6
2.2耳膜 7
2.3聽小骨 7
2.4韌帶和肌腱 8
2.5關節和系統之自由度 9
2.6建立座標系 9
2.7整合中耳各個結構之數學模型 10
第三章 中耳之模態參數 12
3.1拉格朗日方程式 12
3.2動能與位能 13
3.3中耳之固有頻率及振形 15
3.4中耳之頻率響應函數 16
3.5助聽器之頻率響應函數 18
第四章 助聽器附著耳膜後頻率響應函數 21
4.1中耳之頻率響應函數 21
4.2助聽器之頻率響應函數 22
4.3頻率響應函數之合成 22
4.4中耳之特性 26
第五章 結論與建議 28
參考文獻 29
附表 33
附圖 39
附錄一 68


[1]D. S. Chitore, S. C. Saxena, and P. Mukhopadhyay, “Electronic model of the middle ear.,” Med. Biol. Eng. Comput., vol. 21, no. 2, pp. 176–178, 1983.
[2]A. Eiber and W. Schiehlen, “Reconstruction of hearing by mechatronical devices,” Rob. Auton. Syst., vol. 19, no. 2, pp. 199–204, 1996.
[3]M. Kringlebotn, “Network model for the Human middle ear,” Scand. Audiol., vol. 17, no. 2, pp. 75–85, 1988.
[4]P. Parent and J. B. Allen, “Time-domain ‘wave’ model of the human tympanic membrane,” Hear. Res., vol. 263, no. 1–2, pp. 152–167, 2010.
[5]J. Pascal, a Bourgeade, M. Lagier, and C. Legros, “Linear and nonlinear model of the human middle ear.,” J. Acoust. Soc. Am., vol. 104, no. 3 Pt 1, pp. 1509–1516, 1998.
[6]J. Zwislocki, “Analysis of the Middle-ear function . Part I : Input impedance,” The Journal of the Acoustical Society of America, vol. 34 ,no. 8 Pt 2,pp. 1514–1523, 1962.
[7]C. Stieger, H. Bernhard, D. Waeckerlin, M. Kompis, J. Burger, and R. Haeusler, “Human temporal bones versus mechanical model to evaluate three middle ear transducers.,” J. Rehabil. Res. Dev., vol. 44, no. 3, pp. 407–415, 2007.
[8]W. F. Decraemer, J. J. J. Dirckx, and W. R. J. Funnell, “Three-dimensional modelling of the middle-ear ossicular chain using a commercial high-resolution X-ray CT scanner,” JARO - J. Assoc. Res. Otolaryngol., vol. 4, no. 2, pp. 250–263, 2003.
[9]P. Ferris and P. J. Prendergast, “Middle-ear dynamics before and after ossicular replacement,” J. Biomech., vol. 33, no. 5, pp. 581–590, 2000.
[10]W. R. Funnell, “On the undamped natural frequencies and mode shapes of a finite-element model of the cat eardrum.,” J. Acoust. Soc. Am., vol. 73, no. 5, pp. 1657–1661, 1983.
[11]W. R. Funnell, W. F. Decraemer, and S. M. Khanna, “On the damped frequency response of a finite-element model of the cat eardrum.,” J. Acoust. Soc. Am., vol. 81, no. 6, pp. 1851–1859, 1987.
[12]W. R. Funnell and C. a Laszlo, “Modeling of the cat eardrum as a thin shell using the finite-element method.,” The Journal of the Acoustical Society of America, vol. 63, no. 5. pp. 1461–1467, 1978.
[13]R. Z. Gan, B. Feng, and Q. Sun, “Three-dimensional finite element modeling of human ear for sound transmission,” Ann. Biomed. Eng., vol. 32, no. 6, pp. 847–859, 2004.
[14]R. Z. Gan, Q. Sun, R. K. Dyer, K.-H. Chang, and K. J. Dormer, “Three-dimensional modeling of middle ear biomechanics and its applications.,” Otol. Neurotol., vol. 23, no. 3, pp. 271–280, 2002.
[15]T. Koike, H. Wada, and T. Kobayashi, “Modeling of the human middle ear using the finite-element method.,” J. Acoust. Soc. Am., vol. 111, no. 3, pp. 1306–1317, 2002.
[16]C.-F. Lee, P.-R. Chen, W.-J. Lee, J.-H. Chen, and T.-C. Liu, “Three-dimensional reconstruction and modeling of middle ear biomechanics by high-resolution computed tomography and finite element analysis.,” Laryngoscope, vol. 116, no. 5, pp. 711–716, 2006.
[17]Q. Sun, R. Z. Gan, K.-H. Chang, and K. J. Dormer, “Computer-integrated finite element modeling of human middle ear.,” Biomech. Model. Mechanobiol., vol. 1, no. 2, pp. 109–122, 2002.
[18]H. Wada, T. Metoki, and T. Kobayashi, “Analysis of dynamic behavior of human middle ear using a finite-element method.,” J. Acoust. Soc. Am., vol. 92, no. 6, pp. 3157–3168, 1992.
[19]C. Weistenhofer and H. Hudde, “Determination of the shape and inertia properties of the human auditory ossicles,” Audiol. Neuro-Otology, vol. 4, no. 3–4, pp. 192–196, 1999.
[20]K. R. Williams and T. H. J. Lesser, “A finite element analysis of the natural frequencies of vibration of the human tympanic membrane.Part I.,” Br. J. Audiol., vol. 24, no. 5, pp. 319–327, 1990.
[21]T. H. Lesser and K. R. Williams, “The tympanic membrane in cross section: a finite element analysis.,” J. Laryngol. Otol., vol. 102, no. 3, pp. 209–214, 1988.
[22]W. J. Yao, H. C. Zhou, B. L. Hu, X. S. Huang, and X. Q. Li, “Research on ossicular chain mechanics model,” Math. Probl. Eng., vol. 2010, 2010.
[23]F. Bohnke, T. Bretan, S. Lehner, and T. Strenger, “Simulations and measurements of human middle ear vibrations using multi-body systems and laser-doppler vibrometry with the floating mass transducer,” Materials (Basel)., vol. 6, no. 10, pp. 4675–4688, 2013.
[24]T. Wright, The linear and nonlinear biomechanics of the middle ear, University dissertation from Dept. of Otolaryngology, University Hospital, S22185 Lund. 2005.
[25]G. Volandri, F. Di Puccio, P. Forte, and S. Manetti, “Model-oriented review and multi-body simulation of the ossicular chain of the human middle ear,” Med. Eng. Phys., vol. 34, no. 9, pp. 1339–1355, 2012.
[26]H. Chen, T. Okumura, S. Emura, and S. Shoumura, “Scanning electron microscopic study of the human auditory ossicles,” Ann. Anat., vol. 190, no. 1, pp. 53–58, 2008.
[27]T. Cheng and R. Z. Gan, “Mechanical properties of stapedial tendon in human middle ear.,” J. Biomech. Eng., vol. 129, no. 6, pp. 913–918, 2007.
[28]T. Cheng and R. Z. Gan, “Experimental measurement and modeling analysis on mechanical properties of tensor tympani tendon.,” Med. Eng. Phys., vol. 30, no. 3, pp. 358–366, 2008.
[29]D. J. Kelly, P. J. Prendergast, and a W. Blayney, “The effect of prosthesis design on vibration of the reconstructed ossicular chain acomparative finite element analysis of four prostheses,” Heal. (San Fr.), pp. 1–28, 2001.
[30]T. Cheng, C. Dai, and R. Z. Gan, “Viscoelastic properties of human tympanic membrane,” Ann. Biomed. Eng., vol. 35, no. 2, pp. 305–314, 2007.
[31]N. Hato, S. Stenfelt, and R. L. Goode, “Three-dimensional stapes footplate motion in human temporal bones,” Audiol. Neuro-Otology, vol. 8, no. 3, pp. 140–152, 2003.
[32]Y.-F. Chou and L.-C. Wang, “On the Modal Testing of Microstructures: Its Theoretical Approach and Experimental Setup,” Journal of Vibration and Acoustics, vol. 123, no. 1. p. 104, 2001.
[33]周元昉,沈一羽, 實驗振態分析理論之研究, 國立台灣大學機械系講義, 1984.
[34]J.-S. Tsai and Y.-F. Chou, “The identification of dynamic characteristics of a single bolt joint,” J. Sound Vib., vol. 125, no. 3, pp. 487–502, 1988.
[35]黃千才, 光電式耳膜附著助聽器之動態行為研究, 國立台灣大學機械所碩士論文, 2013.
[36]B. Feng and R. Z. Gan, “A lumped-parameter mechanical model of human ear for sound transmission,” Proc. Second Jt. 24th Annu. Conf. Annu. Fall Meet. Biomed. Eng. Soc. [Engineering Med. Biol.], vol. 1, pp. 2–3, 2002.
[37]M. Ferrazzini, Virtual middle ear: A dynamical mathematical model based on the finite element, Doctoral Theses, E.T.H., 2003.
[38]A. Eiber and H. G. Freitag, “On simulation models in otology,” Multibody Syst. Dyn., vol. 8, no. 2, pp. 197–217, 2002.
[39]“Laboratory of Biomedical Physics,” University of Antwerp - Faculty of Science. [Online]. Available: http://www.ua.ac.be/main.aspx?c=.BIMEF&n=71225.
[40]T. Cheng and R. Z. Gan, “Mechanical properties of anterior malleolar ligament from experimental measurement and material modeling analysis,” Biomech. Model. Mechanobiol., vol. 7, no. 5, pp. 387–394, 2008.
[41]T. Cheng, Mechanical properties of human middle ear tissues, PhD Thesis, University of oklahoma, 2007.
[42]R. Z. Gan, M. W. Wood, and K. J. Dormer, “Human middle ear transfer function measured by double laser interferometry system.,” Otol. Neurotol., vol. 25, no. 4, pp. 423–435, 2004.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top