跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 17:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王耀祥
研究生(外文):Yao-Hsiang Wang
論文名稱:電動車用鋰電池組之可靠度分析
論文名稱(外文):Reliability Analysis of Lithium-Ion Battery-Packs Used in Electric Vehicles
指導教授:吳文方
指導教授(外文):Wen-Fang Wu
口試委員:劉霆詹魁元
口試委員(外文):Tyng LiuKuei-Yuan Chan
口試日期:2015-06-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:51
中文關鍵詞:電動車鋰電池組多狀態系統通用生成函數可靠度模糊理論
外文關鍵詞:electrical vehiclelithium-ion battery-packmulti-state systemuniversal generating functionreliabilityfuzzy theory
相關次數:
  • 被引用被引用:3
  • 點閱點閱:355
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
因鋰電池具有高能量密度、良好的穩定性、充放電效率高、循環壽命長等優點,逐漸成為現今電動車儲能裝置使用的電池組,但國內少有鋰電池組量化可靠度及其與成本間相互關係的研究,是以本研究考慮鋰電池組中各電池單元健康狀態(State of Health)具有不確定的特性,將整個鋰電池組視為多狀態系統(Multi-State System),且電池組內的電池單元在經多次充放電使用後會有健康狀態退化的現象,利用上述不確定特性結合機率學上的通用生成函數法(Universal Generating Function),來評估不同配置鋰電池組的系統可靠度及其與成本間的關係,因為過度提升電池組可靠度會使成本相對提升,所以需要在這兩者間取得一個平衡。此外,本研究也應用模糊理論深化電池健康狀態判斷的不確定性,探討該不確定性對評估結果的影響。本研究透過數值分析發現,具有相同數量鋰電池單元的串並聯電池組成本相同,但使用較多並聯配置的電池組可靠度優於使用較多串聯配置的電池組,在成本相同考量下,吾人可藉此設計出可靠度較佳配置的鋰電池組。透過本研究所提方法可讓電動車設計工程師對電池組可靠度及其與成本間取捨提供一參考依據。

The lithium-ion battery-pack has been considered a good candidate for using in electric vehicles as an energy storage device owing to its high power-density, good stability, high charge-discharge efficiency and high-cycle life. The battery-pack usually consists of many battery-cells. The state of charge of the battery-cell degenerates along with charge-discharge cycles, and it results in the reliability issue of the battery-pack. However, there was little study on the relationship between the reliability and cost of a lithium-ion battery-pack. It should be an interesting research topic because over-enhancing the reliability of the battery-pack makes the cost increase and it is necessary to make a tradeoff between them. In this study, the state of health of a single battery-cell is modeled as a multi-state system in consideration of its uncertainty, and its reliability can be evaluated. Accordingly, the lithium-ion battery-pack becomes a large system consisting of many battery-cells and its reliability can be evaluated as well. In addition, fuzzy set theory is applied to take uncertainty of the state discretization into consideration. Based on the above modeling and the probability theory, universal generating function of the battery-pack can be derived, and the relationship between battery-pack reliability and cost of the battery-pack for various kinds of assembly can be disclosed. From the result of numerical analysis, it is found that with the same cost for the same numbers of battery-cells, the assembly having more parallel cells is more reliable than that of having more series cells.

口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 viii
Chapter 1 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 本文架構 4
Chapter 2 應用原理 5
2.1 鋰電池專有名詞解釋 5
2.2 鋰電池工作原理 7
2.3 可靠度與機率函數 7
2.3.1 可靠度數學模型 8
2.3.2 常態機率分布 12
2.3.3 中央極限定理 13
2.3.4 系統可靠度 14
2.4 通用生成函數 16
2.4.1 矩生成函數與z轉換 16
2.4.2 通用生成函數 18
2.4.3 多狀態系統 20
2.5 模糊理論 23
2.5.1 模糊集合 23
2.5.2 模糊通用生成函數 24
Chapter 3 電量衰退模型[2] 27
3.1 溫度應力因子電量衰退模型 29
3.2 充放電率應力因子電量衰退模型 30
3.3 放電深度應力因子電量衰退模型 32
3.4 多重應力因子電量衰退模型 33
Chapter 4 鋰電池組可靠度分析 34
4.1 鋰電池組多狀態系統 34
4.2 可靠度與成本分析 38
Chapter 5 結論與未來展望 47
REFERENCES 49


Y. Srinivasan, Batteries for Vehicular Applications, Lawrence Berkeley National Lab, 2008.
Y. Cui, C. Du, G. Yin, Y. Gao, L. Zhang, T. Guan, and L. Yang, “Multi-stress factor model for cycle lifetime prediction of lithium ion batteries with shallow-depth discharge,” Journal of Power Sources, Vol. 146, pp. 123-132, 2015.
S. Santhanagopalan, J. Stockel, and R.E. White, “Secondary batteries-lithium rechargeable systems-lithium-ion lifetime Prediction,” Encyclopedia of Electrochemical Power Sources, pp. 418-437, 2009.
B. Y. Liaw, E. P. Roth, R. G. Jungst, G. Nagasubramanian, H. L. Case, and D. H. Doughty, “Correlation of arrhenius behaviors in power and capacity fades with cell impedance and heat generation in cylindrical lithium-ion cells,” Journal of Power Sources, Vol. 119-121, pp. 874-886, 2003.
J. Shim R. Kostecki, and T. Richardson, “Electrochemical analysis for cycle performance, and capacity fading of a lithium-ion battery cycled at elevated temperature,” Journal of Power Sources, Vol. 112, No. 1, pp. 222-230, 2002.
I. J. Ferna ́ndez, and C. F. Calvillo, A. Sa ́nchez-Miralles, and J. Boal, “Capacity fade and aging models for electric batteries and optimal charging strategy for electric vehicles,” Energy, Vol. 60, pp. 35-43, 2013.
J. Li, E. Murphy, J. Winnick, and P. A. Kohl, “Studies on the cycle life of commercial lithium ion batteries during rapid charge-discharge cycling,” Journal of Power Sources, Vol. 102, No. 1-2, pp. 294-301, 2001.
R. Premanand, B. Haran, R. White, and B. N. Popov, “Capacity fade studies on spinel based Li-ion cells,” Proceedings of the Seventeenth Annual Battery Conference on Applications and Advances, pp. 25-30, 2002.
G. Ning, B. Haran, and B. N. Popov, “Capacity fade study of lithium-ion batteries cycled at high discharge rates,” Journal of Power Sources, Vol. 117, No. 1-2, pp. 160-169, 2003.
S. Magazine, P. Policy, and S. Grid, “Modeling lithium ion battery degradation in electric vehicles,” 2010 IEEE Conference on Innovative Technologies for an Efficient and Reliable Electricity Supply, pp. 349-356, 2010.
J. B. Goodenough, and Y. Kim, “Challenges for rechargeable batteries,” Journal of Power Sources, Vol. 196, No. 16, pp. 6688-6694, 2011.
M. Me ́ne ́trier, C. Vaysse, L. Croguennec, C. Delmas, C. Jordy, F. Bonhomme, and P. Biesan, “Li and H MAS NMR observation of interphase layers on lithium nickel oxide based positive electrodes of lithium-ion batteries,” Electrochem and Solid-State Letters, Vol. 7, No. 6, pp. 140-143, 2004.
G. Botte, B. Johnson, and R. White, “Influence of some design variables on the thermal behavior of a lithium-ion cell,” Journal of The Electrochemical Society, Vol. 146, pp. 914-923, 1999.
R. Darling, and J. Newman, “Modeling Side Reactions in Composite LiyMn_2 O_4 Electrodes,” Journal of the Electrochemical Society, Vol. 145, No. 3, pp. 990-998, 1998.
J. D. Dogger, B. Roossien, and F. D. J. Nieuwenhout, “Characterization of Li-ion batteries for intelligent management of distributed grid-connected storage,” IEEE Transactions on Energy Convers, Vol. 26, No. 1, pp. 256-263, 2011.
K. S. Ng, C. S. Moo, Y. P. Chen, and Y. C. Hsieh, “Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries,” Applied Energy, Vol, 86, No. 9, pp. 1506-1511, 2009.
M. Shahriari, and M. Farrokhi, “Online state-of-health estimation of VRLA batteries using state of charge,” IEEE Transactions on Industrial Electron, Vol. 60, No. 1, pp. 191-202, 2013.
A. Lisnianski, and G. Levitin, Multi-state system reliability: assessment, optimization and applications, World Scientific, 2003.
G. Levitin, A. Lisnianski, H. Ben-Haim, and D. Elmakis, “Redundancy optimization for series-parallel multi-state system,” IEEE Transactions on Reliability, Vol. 47, No. 2, pp. 165-172, 1998.
M. Ouzineb, M. Nourelfath, and M. Gendreau, “Tabu search for the redundancy allocation problem of homogenous series-parallel multi-state systems,” Reliability Engineering System Safety, Vol. 93, No. 8, pp. 1257-1272, 2008.
Z. Tian, G. Levitin, and M. J. Zuo, “A joint reliability-redundancy optimization approach for multi-state series-parallel systems,” Reliability Engineering System Safety, Vol. 94, No. 10, pp. 1568-1576, 2009.
D. Andrea, Battery Management Systems for Large Lithium Ion Battery Packs, Artech House, 2010.
R. Spotnitz, “Simulation of capacity fade in lithium-ion batteries,” Journal of Power Sources, Vol. 113, pp. 72-80, 2003.
L. Serrao, Z. Chehab, Y. Guezennee, and G. Rizzoni, “An aging model of Ni-MH batteries for hybrid electric vehicles,” 2005 IEEE Conference in Vehicle Power and Propulsion, 2005.
D. C. Montgomery, and G. C. Runger, Applied Statistics and Probability for Engineers, Wiley, 2011.
G. Levitin, The Universal Generating Function in Reliability Analysis and Optimization, Springer, 2005.
Z. Liu, C. Tan, and F. Leng, “A reliability-based design concept for lithium-ion battery pack in electric vehicles,” Reliability Engineering System Safety, Vol. 134, pp. 169-177, 2015.
Y. Ding, and A. Lisnianski, “Fuzzy universal generating functions for multi-state system reliability assessment,” Fuzzy Sets and Systems, Vol. 159, No. 3, pp. 307-324, 2008.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 5. 張心悌(2012)。〈反向揭穿公司面紗原則之研究〉,《東吳法律學報》,24卷2期。
2. 5. 張心悌(2012)。〈反向揭穿公司面紗原則之研究〉,《東吳法律學報》,24卷2期。
3. 12. 盧世寧(2014)。〈論租稅關係人交易之法人格否認〉,《法學叢刊》,223卷。
4. 12. 盧世寧(2014)。〈論租稅關係人交易之法人格否認〉,《法學叢刊》,223卷。
5. 9. 劉興善(1978)。〈論公司法人格之否認〉,《政大法學評論》,18期。
6. 4. 郭大維(2013)。〈股東有限責任與否認公司法人格理論—「揭穿公司面紗原則之探討」〉,《中正財經法學》,7期。
7. 9. 劉興善(1978)。〈論公司法人格之否認〉,《政大法學評論》,18期。
8. 4. 郭大維(2013)。〈股東有限責任與否認公司法人格理論—「揭穿公司面紗原則之探討」〉,《中正財經法學》,7期。
9. 11. 蔡章麟(1950)。〈論誠實信用的原則〉,《台大社會科學論叢》,第1輯。
10. 11. 蔡章麟(1950)。〈論誠實信用的原則〉,《台大社會科學論叢》,第1輯。
11. 7. 楊君仁(2010)。〈最低資本額及資本不足與債權人保護-以德國法之理論發展為中心〉,《法學新論》,第20期。
12. 7. 楊君仁(2010)。〈最低資本額及資本不足與債權人保護-以德國法之理論發展為中心〉,《法學新論》,第20期。
13. 10. 廖大穎(2013)。〈關係企業之法規範與公司治理〉,《中正財經法學》,6期。
14. 3. 洪令家(2014)。〈從美國法看揭穿公司面紗原則在我國的實踐〉,《中正財經法學》,8期。
15. 3. 洪令家(2014)。〈從美國法看揭穿公司面紗原則在我國的實踐〉,《中正財經法學》,8期。
 
無相關點閱論文