跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 19:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳勝智
研究生(外文):Sheng-Ghih Wu
論文名稱:CMOS標準製程之微懸臂樑於抗癲癇藥物丙戊酸之研究
論文名稱(外文):Detection of Anti-eplieptic Drug Valproic acid by CMOS-based Microcantilever
指導教授:黃榮山
指導教授(外文):Long-Sun Huang
口試委員:施文彬陳俊杉
口試委員(外文):Wen-Pin ShihChuin-Shan Chen
口試日期:2015-07-02
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:77
中文關鍵詞:微懸臂樑壓阻丙戊酸電場操控
外文關鍵詞:microcantileverpiezoresistivevalproic acidelectrical field enhancement
相關次數:
  • 被引用被引用:2
  • 點閱點閱:87
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究證明了以CMOS MEMS製程之壓阻式微懸臂量晶片,結合電場操控的訊號加強,成就一可攜式、可定量之小分子藥物感測器。
現行對於長期施打需療劑監測(Therapeutic Drug Monitoring)需要患者透過定期回診抽血,而為實現居家照護本研究欲打造出一具可攜式、可定量之潛力的感測晶片,用以改善此狀況。現行諸多可定量之生物感測器,其工作機制不易於量測小分子藥物。惟壓阻式微懸臂樑感測機制係透過蛋白質構型變化,因其不必受制於待測物的質量限制,較利於偵測小分子藥物。透過國家晶片系統設計中心下線的晶片,以台積電MEMS製程製造之含表面金箔之生醫感測器,結合微流道系統封裝,加入導電玻璃作為電場操控之用。該導電玻璃可與經設計後的微懸臂樑金屬層形成電場,該電場對於帶電的蛋白質具有導引作用使其更易佈植於感測表面。
以抗癲癇藥物-丙戊酸(Valproic acid)作為抗原,透過抗體以專一性鍵結的方式捕捉丙戊酸分子,該鍵結發生引發的表面應力變化致使壓阻層訊號改變,在療劑監測範圍中可定量感測,50 μg/mL得6.87 ppm之訊號、75 μg/mL得10.03 ppm之訊號及100 μg/mL得12.68 ppm之訊號,而施加30 Volt的電場操控,感測訊號可提升1.84倍。
本研究不僅驗證了該微懸臂樑可用於量測丙戊酸,另外更驗證了結合電場操控的技術於該微懸臂樑,對其感測訊號有顯著提升,這項結果對於量測更小濃度的藥物具其意義。


This study demonstrates a standard CMOS-MEMS piezoresistive microcantilever biosensor with electric field enhancement of capture antibody immobilization to be a portable, real-time and quantitative biosensor for drug detection.
For patients under the therapeutic drug monitoring that manages drug dosage of very narrow concentration in blood, this device shows a potential of fast turn-around-time, low cost and efficient management for point-of-care applications or personal diagnosis. The microcantilever biosensor based on immobilized antibody conformation change for specific recognition is able to yield minute induced surface stresses of cantilever deflection. Especially, this biosensor exhibits unique advantages on small-molecule detection over available label-free biosensors. Meanwhile, the microcantilever sensors were fabricated by tsmc 0.35 μm 2P4M CMOS-MEMS process with an additional gold layer coating on top of the sensing surface. The sensors were packaged into a micro-channel and its associated fluidic system. The ITO (Indium tin oxide) was embedded within the micro-channel system as to apply an electric field in a capture protein immobilized processs.
Valproic acid has long been used as an antiepileptic medication, which is administered through therapeutic drug monitoring and has a narrow therapeutic dosage range of 50–100 μg/mL in blood or serum for drug effectiveness. The measurement of the antiepileptic drug Valproic acid used a single free-standing, electrical detection microcantilever biosensor in a thermally controlled system. This study showed the results of response electrical signal and associated surface stresses with respect to the valproic acid drug concentrations of 50 μg/mL, 75 μg/mL, 100 μg/mL. With the 30 volts of applied electric fields, the study achieved the valproic acid drug detection by 1.84 folds of signal response increase over a regular measurement.
This study shows the capability of microcantilever biosensors for detection of small-molecule drug Valproic acid. With an introduction of the electric field for enhanced capture protein immobilization, the standard CMOS-MEMS piezoresistive microcantilever biosensor exhibits efficient use of small-molecule drug detection for potential personal diagnostics.


第一章 緒論 1
1-1 前言 1
1-2 研究目的與動機 1
1-3 文獻回顧 3
1-3-1 蛋白質特性與其吸附應用之研究 3
1-3-2 癲癇症與抗癲癇藥物 4
1-3-3 微懸臂樑生物感測器用於生化檢測 10
1-4 論文大綱 12
第二章 生物感測器之原理與介紹 14
2-1 生物的免疫反應 14
2-1-1 抗體 15
2-1-2 抗體抗原間的作用力 16
2-2 生物感測器基本原理 16
2-3 表面電漿共振生物感測器 20
2-4 粒子增強型比濁抑制免疫分析法 21
2-5 微懸臂樑生物感測器 22
第三章 CMOS MEMS壓阻式微懸臂樑理論與設計 26
3-1 微懸臂樑基本理論 26
3-2 微懸臂樑應力機制與應力分析 29
3-2-1 微懸臂樑應力機制 29
3-2-2 微懸臂樑應力分析 32
3-3 微懸臂樑設計分析 37
3-3-1 微懸臂樑結構尺寸分析 37
3-3-2 壓阻材料層尺寸分析 40
3-4 雜訊分析 41
3-5 CMOS MEMS壓阻式微懸臂樑設計 44
第四章 CMOS MEMS壓組式微懸臂樑量測與封裝 47
4-1 微懸臂樑晶片製作 47
4-2 微懸臂樑機電特性量測 49
4-3 電路板設計與製作 54
4-4 微流道系統製作 55
4-4-1 微流道基板製作 55
4-4-2 微流道上蓋製作 56
4-5 CMOS MULTI-OPTIONS-MEMS壓阻式微懸臂樑感測系統之封裝 57
4-6 溫度補償架構與方法 58
4-7 藥物測試實驗架構與方法 59
第五章 實驗結果與討論 64
5-1 未加電場於丙戊酸之反應量測 64
5-2 電場操控辨識元蛋白質之操作與實驗設置 67
5-3 電場操控對於不同濃度丙戊酸之量測反應比較 68
第六章 結論與未來展望 71
6-1 結論 71
6-2 未來展望 72
第七章 參考文獻 73


[1]Fritz, J., Baller, M. K., Lang, H. P., Rothuizen, H., Vettiger, P., Meyer, E., Güntherodt, H. –J., Gerber, Ch & Gimzewski, J. K. (2000). Translating biomolecular recognition into nanomechanics. Science, 288(5464), 316-318.
[2]Wu, G., Datar, R. H., Hansen, K. M., Thundat, T., Cote, R. J., & Majumdar, A. (2001). Bioassay of prostate-specific antigen (PSA) using microcantilevers.Nature biotechnology, 19(9), 856-860.
[3]Pei, J., Tian, F., & Thundat, T. (2004). Glucose biosensor based on the microcantilever. Analytical Chemistry, 76(2), 292-297.
[4]Zhang, Y., Venkatachalan, S. P., Xu, H., Xu, X., Joshi, P., Ji, H. F., & Schulte, M. (2004). Micromechanical measurement of membrane receptor binding for label-free drug discovery. Biosensors and Bioelectronics, 19(11), 1473-1478.
[5]Huang, L. S., Pheanpanitporn, Y., Yen, Y. K., Chang, K. F., Lin, L. Y., & Lai, D. M. (2014). Detection of the antiepileptic drug phenytoin using a single free-standing piezoresistive microcantilever for therapeutic drug monitoring. Biosensors and Bioelectronics, 59, 233-238.
[6]Moulin, A. M., O''shea, S. J., & Welland, M. E. (2000). Microcantilever-based biosensors. Ultramicroscopy, 82(1), 23-31.
[7]Cooper, M. A., & Singleton, V. T. (2007). A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions. Journal of Molecular Recognition, 20(3), 154-184.
[8]Mitchell, J. (2010). Small molecule immunosensing using surface plasmon resonance. Sensors, 10(8), 7323-7346.
[9]Chen, Y., Dong, B., & Zhou, W. (2010). Surface plasmon resonance biosensor modified with multilayer silver nanoparticles films. Applied Surface Science, 257(3), 1021-1026.
[10]Wang, W. U., Chen, C., Lin, K. H., Fang, Y., & Lieber, C. M. (2005). Label-free detection of small-molecule–protein interactions by using nanowire nanosensors. Proceedings of the National Academy of Sciences of the United States of America, 102(9), 3208-3212.
[11]Moulton, S. E., Barisci, J. N., Bath, A., Stella, R., & Wallace, G. G. (2003). Investigation of protein adsorption and electrochemical behavior at a gold electrode. Journal of colloid and interface science, 261(2), 312-319.
[12]Yen, Y. K., Huang, C. Y., Chen, C. H., Hung, C. M., Wu, K. C., Lee, C. K., Chang, J. S., Lin, S. & Huang, L. S. (2009). A novel, electrically protein-manipulated microcantilever biosensor for enhancement of capture antibody immobilization. Sensors and Actuators B: Chemical, 141(2), 498-505.
[13]陳獻宗, 當代神經學, 橘井文化事業有限公司, 2003.
[14]Raiteri, R., Grattarola, M., Butt, H. J., & Skládal, P. (2001). Micromechanical cantilever-based biosensors. Sensors and Actuators B: Chemical, 79(2), 115-126.
[15]Davies, J. E. (2007). The pharmacological basis of therapeutics. BMJ Publishing Group Ltd.
[16]Gerald, E. S and Judith, T. B., Therapeutic Drug Monitoring. Appleton & Lange, USA, (1995)
[17]賴沛均, 姚淑惠, 賴振榕, 謝右文, “Valproic acid 與Carbapenem 類藥品交互作用顯著影響藥物血中濃度案例報告,”Formosa Journal of Clinical Pharmacy, vol. 18. No. 3. pp. 67-77, 2010.
[18]Facts, D. I. (1997). Facts & comparisons. Inc., St. Louis. MO, 19.
[19]Berger, R., Delamarche, E., Lang, H. P., Gerber, C., Gimzewski, J. K., Meyer, E., & Güntherodt, H. J. (1997). Surface stress in the self-assembly of alkanethiols on gold. Science, 276(5321), 2021-2024.
[20]Fritz, J., Baller, M. K., Lang, H. P., Rothuizen, H., Vettiger, P., Meyer, E., ... & Gimzewski, J. K. (2000). Translating biomolecular recognition into nanomechanics. Science, 288(5464), 316-318.
[21]Ndieyira, J. W., Watari, M., Barrera, A. D., Zhou, D., Vögtli, M., Batchelor, M., Cooper, M. A., Strunz, T., Horton, M. A., Abell, C., Rayment, T., Aeppli, G. & McKendry, R. A. (2008). Nanomechanical detection of antibiotic–mucopeptide binding in a model for superbug drug resistance. Nature Nanotechnology, 3(11), 691-696.
[22]Vancura, C., Rüegg, M., Li, Y., Hagleitner, C., & Hierlemann, A. (2005). Magnetically actuated complementary metal oxide semiconductor resonant cantilever gas sensor systems. Analytical chemistry, 77(9), 2690-2699.
[23]Zimmermann, M., Volden, T., Kirstein, K. U., Hafizovic, S., Lichtenberg, J., Brand, O., & Hierlemann, A. (2008). A CMOS-based integrated-system architecture for a static cantilever array. Sensors and Actuators B: Chemical, 131(1), 254-264.
[24]Huang, C. W., Hsueh, H. T., Huang, Y. J., Liao, H. H., Tsai, H. H., Juang, Y. Z., Lin, T. H. & Lin, C. T. (2013). A fully integrated wireless CMOS microcantilever lab chip for detection of DNA from Hepatitis B virus (HBV). Sensors and Actuators B: Chemical, 181, 867-873.
[25]http://commons.wikimedia.org/wiki/File:Immunoglobulin_basic_unit.svg#/media/File:Immunoglobulin_basic_unit.svg
[26]Yen, Y. K., “A Study on an Integrated Miniature Piezoresistive Microcantilever Biosensor and its Applications,” Graduate Institute of Applied Mechanics College of Engineering National Taiwan University Doctoral Dissertation, 2009.
[27]洪維廷, 應用壓阻式微懸臂樑生物感測器偵測巴斯德桿菌之研究, 國立臺灣大學工學院應用力學研究所碩士論文, 2009
[28]Lee, H. A., Wyatt, G. M., Bramham, S. A. R. A., & Morgan, M. R. (1990). Enzyme-linked immunosorbent assay for Salmonella typhimurium in food: feasibility of 1-day Salmonella detection. Applied and environmental microbiology, 56(6), 1541-1546.
[29]Liming, S. H., & Bhagwat, A. A. (2004). Application of a molecular beacon—real-time PCR technology to detect Salmonella species contaminating fruits and vegetables. International journal of food microbiology, 95(2), 177-187.
[30]http://commons.wikimedia.org/wiki/File:Surface_Plasmon_Resonance_(SPR).jpg#/media/File:Surface_Plasmon_Resonance_(SPR).jpg
[31]Opheim, K. E., Glick, M. R., Ou, C. N., Ryder, K. W., Hood, L. C., Ainardi, V., Collymore, L. A., DeArmas, W., Frawley, V. L. & Hutchinson, J. (1984). Particle-enhanced turbidimetric inhibition immunoassay for theophylline evaluated with the Du Pont aca. Clinical chemistry, 30(11), 1870-1874.
[32]Lavrik, N. V., Sepaniak, M. J., & Datskos, P. G. (2004). Cantilever transducers as a platform for chemical and biological sensors. Review of scientific instruments, 75(7), 2229-2253.
[33]Tudor, M. J., Andres, M. V., Foulds, K. W. H., & Naden, J. M. (1988, September). Silicon resonator sensors: interrogation techniques and characteristics. In IEE Proceedings D (Control Theory and Applications) (Vol. 135, No. 5, pp. 364-368). IET Digital Library.
[34]Wu, G., Datar, R. H., Hansen, K. M., Thundat, T., Cote, R. J., & Majumdar, A. (2001). Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nature biotechnology, 19(9), 856-860.
[35]Thaysen, J. (2001). Cantilever for bio-chemical sensing integrated in a microliquid handling system (Doctoral dissertation, Technical University of DenmarkDanmarks Tekniske Universitet, Department of Micro-and NanotechnologyInstitut for Mikro-og Nanoteknologi).
[36]Ji, H. F., Finot, E., Dabestani, R., Thundat, T., Brown, G. M., & Britt, P. F. (2000). A novel self-assembled monolayer (SAM) coated microcantilever for low level caesium detection. Chemical. Communications., (6), 457-458.
[37]Ji, H. F., Zhang, Y., Purushotham, V. V., Kondu, S., Ramachandran, B., Thundat, T., & Haynie, D. T. (2005). 1, 6-Hexanedithiol monolayer as a receptor for specific recognition of alkylmercury. Analyst, 130(12), 1577-1579.
[38]辜煜夫, 應用壓阻式微懸臂樑生物感測器偵測巴斯德桿菌之研究. 國立臺灣大學工學院應用力學研究所碩士論文, 2009.
[39]Moulin, A. M., O''shea, S. J., Badley, R. A., Doyle, P., & Welland, M. E. (1999). Measuring surface-induced conformational changes in proteins. Langmuir, 15(26), 8776-8779.
[40]Zhou, F., Shu, W., Welland, M. E., & Huck, W. T. (2006). Highly reversible and multi-stage cantilever actuation driven by polyelectrolyte brushes. Journal of the American Chemical Society, 128(16), 5326-5327.
[41]Choudhury, A., Hesketh, P. J., Thundat, T., & Hu, Z. (2007). A piezoresistive microcantilever array for surface stress measurement: curvature model and fabrication. Journal of Micromechanics and Microengineering, 17(10), 2065.
[42]Loui, A., Goericke, F. T., Ratto, T. V., Lee, J., Hart, B. R., & King, W. P. (2008). The effect of piezoresistive microcantilever geometry on cantilever sensitivity during surface stress chemical sensing. Sensors and Actuators A: Physical, 147(2), 516-521.
[43]Cheng, L. H., Chang, Y. C., Hu, W. C., Liao, H. H., Tsai, H. H., Juang, Y. Z. & Lu, Y. W. Surface Stress on CMOS Cantilever Sensor Induced by Protein Absorption. 2012 ISMM
[44]林隆翊, 壓阻式微懸臂樑生物感測元件於抗癲癇藥物之研究, 國立臺灣大學工學院應用力學研究所碩士論文, 2011
[45]李忠憲, 具熱補償設計之標準CMOS製程微懸臂樑於抗癲癇藥物丙戊酸之量測, 國立臺灣大學工學院應用力學研究所碩士論文, 2014
[46]張凱峯, 利用電場操控蛋白佈植於壓阻式生物感測器之藥物治療監測應用. 國立臺灣大學工學院應用力學研究所碩士論文, 2012.
[47]http://ebs.cic.org.tw/ebs/equiIntroduction/equiIntroductionAction_doQuery.action
[48]http://www.cic.narl.org.tw/main.jsp
[49]Sandberg, R., Mølhave, K., Boisen, A., & Svendsen, W. (2005). Effect of gold coating on the Q-factor of a resonant cantilever. Journal of Micromechanics and Microengineering, 15(12), 2249.
[50]Specification Sheet of 8-Mercaptooctanoic acid-95%, SIGAM-ALDRICH, Inc.
[51]李信節, 多重感測元件之高性能壓阻式微懸臂樑生化感測器之設計、製程與特性分析. 國立臺灣大學工學院應用力學研究所碩士論文, 2010
[52]Vancura, C., Rüegg, M., Li, Y., Hagleitner, C., & Hierlemann, A. (2005). Magnetically actuated complementary metal oxide semiconductor resonant cantilever gas sensor systems. Analytical chemistry, 77(9), 2690-2699.
[53]賴英煌, 邱雯藝, 洪偉修, 同步輻射X-ray光電子能譜在表面化學之研究CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI) vol. 60, pp.381~390
[54]https://commons.wikimedia.org/wiki/File:XPS_PHYSICS.png#/media/File:XPS_PHYSICS.png


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top