( 您好!臺灣時間:2021/07/31 18:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Kung-Wei Liu
論文名稱(外文):On the Theory of Force Elements with Turbulence Effects:Large-Eddy Simulation
指導教授(外文):Chien-Cheng Chang
口試委員(外文):Chia-Ou ChangChin-Chou Chu
外文關鍵詞:force element theoryturbulencelarge-eddy simulationNACA-0012low-Reynolds-number
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

In this study, turbulence effects on a NACA-0012 airfoil at Reynolds number of 20,700 and the angles of attack (AOA) = 5^° and 〖10〗^° are investigated through the force element theory. Flow fields are computationally obtained through the large-eddy simulation (LES). The computation is carried out on the body-fitted grids with the H-type orthogonal-grid construction. The study extends the force element theory (Chang (1992)) to the analysis for the turbulent flow filed. Turbulence effects can be divided into the computationally resolved field and the sub-grid-scale (SGS) model on the framework of LES. The total force contribution and the local effect of turbulence to the infinite wing are examined, and the results show that both give insignificant effect. Moreover, in the case of AOA = 〖10〗^°, the temporary extreme value of turbulent kinetic energy is investigated. It is found that the extreme is resulting from the interaction between turbulent fluctuation and the trailing-edge wakes. We also measure the resulting increase of turbulent fluctuation, which in turn causes the high ratio of lift and drag contribution due to the local fluctuation.

誌謝 i
摘要 iii
目錄 v
圖目錄 viii
表目錄 xi
Chapter 1 緒論 1
1.1前言 1
1.2動機與目的 1
1.3低雷諾數下之無限翼氣動力特性及相關文獻回顧 4
1.4力元理論與相關氣動力研究之文獻回顧 6
1.5全文概述 8
Chapter 2 力元理論與紊流流場 9
2.1力元理論簡介 9
2.2輔助勢流 10
2.3力元理論推導 10
2.3.1傳統表面積分法 11
2.3.2一般力元理論推導 12
2.3.3紊流架構下之力元理論推導 16
2.4計算紊流流場的力元分析 19
2.4.1紊流流場數值模擬簡介 19
2.4.2大渦旋模擬法之理論 21
2.4.3大渦旋模擬法之計算 22
2.4.4力元理論應用於大渦旋模擬法 26
Chapter 3 模式設定與計算 29
3.1網格生成 29
3.1.1(正交)網格生成文獻回顧 30
3.1.2正交網格生成計算方法 ( Luis Eca ) 31
3.1.3網格生成流程 33
3.2流場求解器之設置 39
3.3計算域設置 40
3.3.1解析度 43
3.3.2翼展寬度 45
3.4輔助勢流之數值計算 47
Chapter 4 無限翼於低雷諾數下之流場模擬與力元分析 51
4.1流場之計算結果與討論 51
4.1.1瞬時流場 52
4.1.2平均流場 57
4.1.3空氣動力係數之討論與驗證 59
4.2力元分析結果與討論 61
4.2.1流場內無限翼之升、阻力來源 61
4.2.2紊流對無限翼之升、阻力效應與比較 66
4.3無限翼之局部氣動力特性 72
4.3.1力元之局部貢獻 73
4.3.2局部空間的紊流效應 76
4.4攻角10度情況下之暫態紊流極値現象 78
4.4.1流場與紊流動能的定性討論 78
4.4.2以截面渦度分析法量化暫態紊流極值現象之效應 81
Chapter 5 結論與未來展望 85
5.1結論 85
5.2未來展望 86

[1]A. Leonard (1974), Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys. 18A, 237-248
[2]Allievi and S. M. Calisal (1992), Application of Bubnov-Galerkin formulation to orthogonal grid generation. J. Comput. Phys. 98, 163
[3]B. Fornberg (1980), A numerical method for conformal mapping. Soc. Ind. Appl. Math. J. Sci. Stat. Comp. Phys. 1, 386-400
[4]Boo Cheong Khoo, Jacob White, Jaime Peraire, and Anthony Patera (Spring 2003), Numerical methods for partial differential equations (SMA 5212). Aeronautics and Astronautics, Massachusetts Institute of Technology
[5]Chang, C. C. (1992), Potential flow and forces for incompressible viscous flow. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences. 437(1901), 517-525.
[6]Chang, C. C., and Lei, S. Y. (1996), An analysis of aerodynamic forces on a delta wing. J. Fluid Mech. 316, 173-196
[7]Chang, C. C., Yang, S. H., and Chu, C. C. (2008), A many-body force decomposition with applications to flow about bluff bodies. J. Fluid Mech. 600, 95-104.
[8]Chu, C. C., Chang, C. C., Liu, C., C., and Chang, R. L. (1996), Suction effect on an impulsively started circular cylinder: Vortex structure and drag reduction. Phys. Fluids. 11, 2995-3007
[9]Christopher P. Mellen, Jochen Frohlich, and Wolfgang Rodi (2003), Lessons from LESFOIL project on large-eddy simulation of flow around airfoil. J. AIAA. 41, 573-581
[10]Cui, A. (1999), On the parallel computing of turbulent rotating stratified flows, Ph.D. dissertation, Stanford Univ., Stanford, Calif.
[11]E. V. Laitone (1997), Wind tunnel tests of wings at Reynolds numbers below 70000. Exp. Fluids. 23, 405-409
[12]G. Ryskin and L. G. Leal (1983), Orthogonal mapping. J. Comp. Phys. 50, 71-100
[13]Howarth, L. (1935), The theoretical determination of the lift coefficient for a thin elliptic cylinder. Proc. R. Soc. Lord. Ser. A 149, 558-586
[14]Howe, M. S. (1995), On the force and moment on a body in an incompressible fluid, with application to rigid bodies and bubbles at high and low Reynolds numbers. Quart. J. Mech. Appl. Math. 48, 401-426
[15]Hua Shan, Li Jiang, and Chaoqun Liu (2005), Direct numerical simulation of flow separation around a NACA 0012 airfoil. J. compfluid. 34, 1096-1114
[16]I. Rodriguez, O. Lehmkuhl, R. Borrell, and A. Oliva (2013), Direct numerical simulation of a NACA0012 in full stall. International Journal of Heat and Fluid Flow. 43, 194-203
[17]Jaber H. Almutairi, Lloyd E. Jones, and Neil D. Sandham (2010), Intermittent bursting of a laminar separation bubble on an airfoil, AIAA J. 48, 414-426
[18]Joe F. Thompson, Frank C. Thames, and C. Wayne Mastin (1974), Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies. J. Comp. Phys. 15, 299-319
[19]Kambe, T. (1986), Acoustic emissions by vortex motions. J. Fluid Mech. 173, 643-666
[20]Katepalli R. Sreenivasan (1999), Fluid turbulence. Review of Modern Physics. 71, 383-395
[21]Lee, J. J., Hsieh, C. T., Chang, C. C., and Chu, C. C. (2012), Vorticity forces on an impulsively started finite plate. J. Fluid Mech. 694, 464-492
[22]Lighthill, M. J. (1986), Fundamentals concerning wave loading on offshore structures. J. Fluid Mech. 173, 667-681
[23]Luis E¸ca (1996), 2D orthogonal grid generation with boundary point distribution control. J. Comput. Phys. 125, 440-453
[24]M. Germano (1986), A proposal for a redefinition of the turbulent stresses in the filtered Navier-Stokes equations. Phys. Fluids. 29 (7), 2323-2324
[25]M. R. Albert (1988), Orthogonal curvilinear coordinate generation for internal flows, in Grid Generation Techniques in Computational Fluid Mechanics. Pineridge Press, Swansea
[26]M. Visbal and D. Knight (1982), Generation of orthogonal and nearly-orthogonal coordinates with grid control near boundaries. J. AIAA. 20, 305-306
[27]Massimo Germano, Ugo Piomelli, Parviz Moin, and William H. Cabot (1991), A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3 (7), 1760-1765
[28]Md. Mahbub Alam, Y. Zhou, H. X. Yang, H. Guo, and J. Mi (2010), The ultra-low Reynolds number airfoil wake. Exp. Fluids. 48, 81-103
[29]O. Lehmkuhl, A. Baez, I. Rodriguez, and C.D. Perez-Segarra (2008a), Direct numerical simulation and large-eddy simulations of the turbulent flow around a NACA 0012 airfoil. In: 7th international conference on computational heat and mass transfer, 1-8
[30]Oliver Fringer (Winter 2011), CEE363c : Ocean and Estuarine Modeling. Civil and Environmental Engineering, Stanford University
[31]P. B. S. Lissaman (1983), Low-Reynolds-number airfoils. Ann. Rev. Fluid Mech. 15, 223-239
[32]Parviz Moin and John Kim (1982), Numerical investigation of turbulent channel flow. J. Fluid Mech. 118, 341-377
[33]Ryoji Kojima (2013), Large-eddy simulation of low-Reynolds-number flow over thick and thin NACA airfoils. J. Aircraft. 50, 187-196
[34]Rong F. Huang and Chih L. Lin (1995), Vortex shedding and shear-layer instability of wing at low-Reynolds numbers. J. AIAA. 33 1398-1403
[35]Rong F. Huang and Han W. Lee (1999), Effects of freestream turbulence on wing-surface Flow and Aerodynamic Performance. J. Aircraft. 36, 965-972
[36]Volkan Akcelik, Branislav Jaramaz, and Omar Ghattas (2001), Nearly orthogonal two-dimensional grid generation with aspect ratio control. J. Comput. Phys. 171, 805-821
[37]Wells, J. C. (1996), A geometrical interpretation of force on a translating body in rotational flow. Phys. Fluids. 8, 442-450
[38]Yan Zang, Robert. L. Street, and Jeffery R. Koseff (1993), A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids. A 5, 3186-3196
[39]Yan Zang, Robert L. Street, and Jeffery R. Koseff (1994), A non-staggered grid, fractional step method for time-dependent incompressible Navier-Stokes equations in curvilinear coordinates. J. Comp. Phys. 114, 18-33
[40]Y. Hoarau, M. Braza, Y. Ventikos, D. Faghani, and G. Tzabiras (2003), Organized modes and thethree-dimensional transition to turbulence in the incompressible flow around a NACA0012 wing. J. Fluid Mech. 496, 63-72
[41]黃美嬌 (1997) "Lecture on an introduction to turbulence (基礎紊流)",國立臺灣大學機械工程學系
[42]蕭穎謙 (1993) "環繞機翼之二維渦漩流的研究",國立臺灣大學應用力學研究所博士論文
[43]蘇正瑜 (1998) "三角翼外流場之力源分析",國立臺灣大學應用力學研究所博士論文
[44]謝政達 (2009) "以力元理論之觀點剖析昆蟲飛行的氣動力機制",國立臺灣大學應用力學研究所博士論文
[45]李健誌 (2012) "以力元理論分析在低雷諾數下有限翼之非定常氣動力特性",國立臺灣大學應用力學研究所博士論文
[46]陳泰元 (2013) "力元理論應用於紊流模式",國立臺灣大學應用力學研究所碩士論文
[47]鄭屹 (2014) "以力元理論探討魚類BFC泳動之奧秘",國立臺灣大學應用力學研究所碩士論文

第一頁 上一頁 下一頁 最後一頁 top