跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 17:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李懿修
研究生(外文):Yi-Hsiu Lee
論文名稱:擬剛體編隊避障策略設計與實驗
論文名稱(外文):Design and Experiment of Obstacle-Avoidance Strategy for Pseudo-Rigid Formation
指導教授:王立昇
口試委員:王伯群林君明王和盛
口試日期:2015-07-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:60
中文關鍵詞:擬剛體編隊避障路徑規劃模糊控制
外文關鍵詞:Pseudo-Rigid BodyFormationObstacle-AvoidancePath-PlanningFuzzy control
相關次數:
  • 被引用被引用:1
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文為進行擬剛體編隊避障策略設計之研究,以擬剛體為隊形搭配路徑規劃演算法,實際整合軟硬體,並進行實驗。
我們以擬剛體編隊法設計多載具的運動隊形,並將擬剛體的形變理論應用在編隊設計上,使多載具隊伍形狀由一組空間齊性形變張量來決定。擬剛體隊形容許旋轉、拉伸、剪變。而此具規則性的隊形比起剛體隊形更能適應於複雜環境。在路徑規劃部份以快速探索隨機樹(RRT)及路徑平滑技巧,規劃隊形的中心路徑。接著設計內部及外部虛擬位能函數來得到擬剛體的形變張量,求得各載具之參考路徑。
於實驗部份,我們首先以Kinect初步偵測環境並將資訊傳送到主控電腦做路徑規劃,於隊伍運動中以多載具協同機制,控制載具間的運動關係,並於運動中加入避障的功能;在避障方面,我們針對障礙物出現於隊伍不同位置的情形設計不同避障策略,並以Kinect偵測障礙物邊界、超音波偵測與障礙物距離,搭配模糊邏輯理論來調整形變張量參數。使隊伍能避開即時出現的障礙物,且在運動過程中隨時保持擬剛體隊形。經實驗測試,本論文所提出的避障方法可行。


誌謝 I
中文摘要 II
ABSTRACT III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 前言與研究動機 1
1.2 文獻回顧 2
1.2.1 多載具路徑規劃 2
1.2.2 擬剛體簡介 3
1.3 研究內容與成果 3
1.4 論文架構 4
第二章 擬剛體編隊設計與路徑規劃 5
2.1 擬剛體特性 5
2.2 擬剛體隊形表示法 8
2.3 路徑規劃 10
2.3.1 快速探索隨機樹(Rapidly-Exploring Random Tree) 11
2.3.2 路徑縮短 12
2.3.3 虛擬力場調整路徑 13
2.3.4 貝茲曲線平滑 15
2.3.5 禁止路徑 16
2.4 擬剛體編隊設計 17
2.4.1 Lennard-Jones potential介紹 17
2.4.2 內部虛擬位能函數 18
2.4.3 外部虛擬位能函數 19
2.4.4 虛擬位能函數分析 20
第三章 硬體架構與系統整合 22
3.1 硬體架構 22
3.1.1 Kinect 感測器 23
3.1.2 超音波感測器 26
3.1.3 馬達編碼器(Encoder) 28
3.2 系統運作架構 29
第四章 控制器與避障設計 30
4.1 載具運動方程式 30
4.2 多載具路徑追蹤控制 31
4.2.1 模糊控制簡介 31
4.2.2 路徑追蹤控制 32
4.2.3 多載具協同控制 36
4.3 多載具避障策略設計 37
4.3.1 分段路徑規劃 41
4.3.2 Kinect偵測障礙物邊界 42
4.3.3 策略一、前方障礙物避障設計 44
4.3.4 策略二、側向障礙物避障設計 45
4.3.5 策略三、隊伍內障礙物避障設計 47
4.3.6 策略四、兩側障礙物避障設計 49
第五章 多載具避障策略實驗 50
5.1 策略一實驗 51
5.2 策略二實驗 53
5.3 策略三實驗 54
5.4 策略四實驗 55
第六章 結論與未來方向 57
參考文獻 58


[1]S. L. Veherencamp, “Individual, kin, and group selection,” in Handbook of Behavioural Neurobiology, Vol. 3, Social Behavior and Communication, 1987.
[2]J. M. Cullen, E. Shaw & H. A. Baldwin, “Methods for Measuring the Three-Dimensional Structure of Fish Schools,” Animal Behavior, Vol. 13, pp. 534-543, 1965.
[3]J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland, E. R. Millter & S. J. Simpson,“From Disorder to Order in Marching Locusts,” Science, Vol. 312, pp. 1401-1406, 2006.
[4]R. G. Brown & J. S. Jennings, “A Pusher/Steerer Model for Strongly Cooperative Mobile Robot Manipulation,” IEEE Int’l Conf. Robots and Systems, Vol. 3, pp. 562-568, 1995.
[5]J. Huang, S. M. Farritor, A. Qadi & S. Goddard, “Localization and Follow-the Leader Control of a Heterogeneous Group of Mobile Robots,” IEEE Trans. Mechatronics, Vol. 11, No. 2, Apr. 2006.
[6]P. Misra & P. Enge, Global Positioning System, Ganga-Jamuna, Lincoln, MA, 2006
[7]T. Balch & R. Arkin, “Behavior-based Formation Control for Multi-robot Teams,” IEEE Trans. Robotics and Automation, Vol. 14, pp. 926-939, Dec. 1999.
[8]M. Allen, J. Ryan, C. Hanson & J. Parle, “String Stability of a Linear Formation Flight Control System,” NASA, Technical Memorandum NASA-TM-2002-210733, Aug. 2002.
[9]M. B. Milam, N. Petit & R. Murray, “Constrained Trajectory Generation for Micro-satellite formation Flying,” AIAA Guid., Nav., & Contr., Conf., 2001.
[10]Fang-Chieh Chen, “Optimal Virtual Potential Functions in Pseudo-Rigid Formation Design,” Graduate Institute of Applied Mechanics, National Taiwan University Master Thesis, 2010.
[11]Tse-Ming Wu, “Design and Experiment of Pseudo-Rigid Formation,” Graduate Institute of Applied Mechanics, National Taiwan University Master Thesis, 2013.
[12]Kuang-Yu Wu, “The Design of Real-Time Obstacle-Avoidance Strategy for the Formation Control of a Multi-Agent System,” Graduate Institute of Applied Mechanics, National Taiwan University Master Thesis, 2014.
[13]H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki & S. Thrun, Principles of Robot Motion, MIT, Cambridge, Massachusetts London, England, 2005.
[14]S. Carpin & L. Parker, “Cooperative leader following in a distributed multi-robot system,” in Proc. IEEE Int. Conf. Robotics & Automation, Vol. 3, pp. 2994-3001, 2002.
[15]J. R. T. Lawton, R. W. Beard, & B. J. Young, “A Decentralized Approach to Formation Maneuvers,” IEEE trans on Robotics and Automation, 2003.
[16]E. Lalish, K. A. Morgansen, & T. Tsukamaki, “Formation Tracking Control using Virtual Structures and Deconfliction,” in Proc. IEEE Conf. Decision and Control, 2006.
[17]J. Shao, G. Xie, J. Yu, & L. Wang, “Leader-following formation control of multiple mobile robots,” in Proc. IEEE/RSJ Int. Symp. Intelligent Control, pp. 808-813, 2005.
[18]L. E. Parker, “On the design of behavior-based multi-robot teams,” J. Adv. Robotics, Vol. 10, No. 6, pp. 547-578, 1996.
[19]C. R. McInnes, “Autonomous ring formation for a planar constellation of satellites,” AIAA J. Guidance, Contr., and Dyn., Vol. 18, No. 5, pp. 1215-1217, 1995.
[20]T. Eren, P. N. Belhumeur, & A. S. Morse, “Closing ranks in vehicle formations based rigidity,” in Proc. IEEE Conf. Decision and Control, Vol. 3, pp. 2959-2961, 2002.
[21]H. Cohen. Pseudo-rigid bodies. Utilitas Math., Vol. 20, pp. 221-247, 1981.
[22]H. Cohen, & G.Muncaster, “The dynamics of pseudo-rigid bodies: general structure and exact solutions, ” Journal of Elasticity, Vol. 14, Issue 2, pp 127-154,June 1984.
[23]R.G. Muncaster, “Invariant manifolds in mechanics I: the general construction of coarse theories from fine theories,” Arch. Rational Mech. Anal., Vol. 84, pp. 353-373, 1984.
[24]D. Lewis & J. C. Simo, “Nonlinear stability of rotating pseudo-rigid bodies,” in Proc. Roy. Soc. Lon., A 427, pp. 281-319, 1990.
[25]M. Epstein, & R. I. Defaz, “The pseudo-rigid rolling coin,” J. of Applied Mechanics, Vol. 72, pp. 695-704, 2005.
[26]S. L. Hsu, H. M. Peng & L. S. Wang, “Modeling of Radius-varying Wheels as Pseudo-Rigid Bodies and their Stability,” Proceedings of the 2007 Cross-Strait Workshop on Controls, 2007.
[27]H. M. Peng, L. S. Wang, & Y. H. Pao, “Dynamic Characteristics of Pseudo-Rigid Motions,” Submitted for publication, 2007.
[28]W. K. Liu, & L. S. Wang, “Pseudo-rigid formation design,” submitted for journal puplication.
[29]Mao-Yu, Chien, “Obstacle Avoidance System Design and Path Planning for An Unmanned Vehicle,” Graduate Institute of Applied Mechanics, National Taiwan University Master Thesis, 2012
[30]I-Kuei,Chen, “Algorithm Design on Intelligent Vision for Objects using RGB and Depth Data ,” Graduate Institute of Electronics Engineering, National Taiwan University Master Thesis, 2013
[31]C.Cai,C.Yang,Q.Zhu,&Y.Liang,“ Collision Avoidance in Multi-Robot Systems,”, In the Proceedings of the IEEE International Conference on Mechatronics and Automation, 2007, pp. 2795 – 2800
[32]C.Cai,C.Yang,Q.Zhu,&Y.Liang, “A Fuzzy-based Collision Avoidance Approach for Multi-robot Systems,” In the Proceedings of the IEEE International Conference on Robotics and Biomimetics, 2007, pp. 1012 – 1017
[33]X. D. Yan,H. Guan,&Y. F. Cui.“Robot Avoid Obstacle Automatically Based on Fuzzy Control in the Process of Tracing ,”Advanced Materials Research.Vol.215,pp.340-343
[34]T. Vicsek, A. Czirok, E. B. Jacob, & I. Cohen, “Novel type of phase transition in a system of self-driven particles,” Phys. Rev. Let., Vol. 75, pp. 1226-1229, 1995.
[35]Z.X.Liu, and L. Guo, “Synchronization of Vicsek Model with Large Population,” proceeding of 26th Chinese Control Conference, pp.6-673-6-677,2007
[36]Y. M. Chen & Y. Tsui, “Limitations to the large strain theory. ” Int. J. for Num. Meth. in Eng., 33:101-114, 2001.
[37]S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” TR 98-11, Computer Science Dept., Iowa State University, 1998.
[38]J. J. Kuffner & S. M. Lavalle, “RRT-Connect: An Efficient Approach to Single-Query Path Planning,” IEEE Int’l Conf. Robotics and Automation, 2000.
[39]Perla B. Balbuena, Jorge M. Seminario, Molecular Dynamics. From Classical to Quantum Methods, Elsevier,1999.
[40]PrimeSense,”PrimeSense3DTechnology,” Internet :http://www.primesense.com/CH
[41]M.R. Andersen, T. Jensen, P. Lisouski, A.K. Mortensen, M.K. Hansen, T.Gregersen and P. Ahrendt, “Kinect Depth Sensor Evaluation for Computer Vision Applications,” Department of Engineering, Aarhus University. Denmark. 37pp. - Technical report ECE-TR-6, 2012
[42]K. Khoshelham, “Accuracy analysis of kinect depth data,” GeoInformation Science, 2010.
[43]C. Albitar, P. Graebling, C. Doignon, “Robust Structured Light Coding for 3D Reconstruction,” International Conference on Computer Vision, p.1-6.2007.
[44]蔡政霖、余志成,”家用服務型機器人之同步定位與環境地圖建構”,中國機械工程學會第二十五屆全國學術研討會,2008
[45]中國科學技術大學, "激光散斑測量", http://www.bb.ustc.edu.cn/jpkc/guojia/dxwlsy/kj/part2/grade3/LaserSpeckle.html


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top