( 您好!臺灣時間:2021/07/31 15:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Kuo-Chan Hsu
論文名稱(外文):Multiphysics Modeling and Analysis of Heat Transfer of Wafer on Electrostatic Chuck
指導教授(外文):Jaw-Yen Yang
口試委員(外文):Juan-Chen HuangGwo-Liang TangMei-Jiau Huang
外文關鍵詞:Electrostatic Chuck (ESCE-Chuck)Wafer temperatureHeat transfer pathAluminium Nitride (AlN)Aluminium oxide (Al_2 O_3)
  • 被引用被引用:0
  • 點閱點閱:546
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

The complete heat transfer path on the AlN and Al2O3 electrostatic chuck (ESC), which were utilized under the various operational conditions, is studied for the potential improvement on the temperature uniformity of the 12-inch wafer. In addition, an identical study on the expanded chuck (299mm) is also carried out for a comparison of the original chuck (293mm). An equivalent thermal circuit analogical to an electrical circuit was illustrated and formulated in terms of variables observed to offer a simple calculation toward a potential optimization. In addition, a good agreement with previous work was achieved and examined the reliability in this model system.
The content of this study is divided in two parts: electrostatic force and wafer temperature. First, in order to optimize the functionality of the attractive force and in avoiding excessive “trial and error” chuck designs, a set of simulations were obtained under various conditions pertaining to the position of the electrode, material, finish and voltage, individually. Second, the ability of backside cooling plays a critical role in the need to control the wafer temperature and its uniformity. It demonstrates that helium exhibited the best performance among He, Ne and Ar, which shows a controllable function with a linear dependence on the pressure and insensitive to the environmental variation during the process. The histogram with a standard deviation (SD), as an indicator of the temperature uniformity, are used to illustrate a fraction of discrete values of the wafer temperature. It discovered the characteristics of the AlN chuck (293mm) exhibited an excellent ability for the wafer cooling on the edge, but unfavorable to the temperature uniformity which Al2O3 chuck (293mm) is capable without temperature oscillations while the backside pressure increases. In addition, it suggested that the characteristics of the different chucks (AlN and Al2O3 ) become more comparable with the increase of the level of the backside pressure. The AlN chuck (299mm) with a linearly dependent on SD and superior in the mean, is regarded as the best one among other chucks, one of which is the Al2O3 chuck (299mm) which SD becomes independent on the pressure and high mean.

摘要 ii
Chapter 1 Introduction 1
1.1 Background and Overview 1
1.2 Literature Review 4
1.2.1 Wafer temperature issues 4
1.2.2 Electrostatic chucking issues 7
1.3 Objectives and Scopes 9
1.4 Organization of Thesis 11
Chapter 2 Theory and Governing Equations 14
2.1 Heat Transfer Physics 15
2.1.1 Method of Heat Transfer 15
2.1.2 Principle Dependencies of Temperature 18
2.1.3 Cooper-Mikic-Yovanovich Correlation 21
2.1.4 Equivalent Thermal Resistance Circuits 25
2.2 Navier-Stokes Equations 30
2.3 Electrostatic field 33
2.3.1 Maxwell stress tensor 34
2.3.2 Equivalent electric circuit 36
2.4 Conjugate Interface 38
Chapter 3 Numerical Results and Discussions 42
3.1 Electrostatic Field on the Wafer 42
3.1.1 Electrostatic distribution and electric field 43
3.1.2 Electrostatic pressure 45
3.2 Wafer Temperature Distribution 51
3.2.1 Coefficient of thermal convection 51
3.2.2 Temperature distribution of the wafer 53
3.2.3 Heat transfer path 68
3.2.4 Validation with literature works 71
Chapter 4 Conclusions and Limitations 72
4.1 Conclusions Remarks 72
4.2 Limitations 75

[1]Yavas, O., Richter, E., Kluthe, C., and Sickmoeller, M. (2009). Wafer-edge yield engineering in leading-edge DRAM manufacturing. Semiconductor Fabtech, 39, 1-5, Retrieve from http://www.fabtech.org/images/uploads/journal_files/e39/FT39-Wafer-edge%20yield%20engineeering%20in%20leading-%20manufacturingQim onda%20AG.pdf
[2]Lee, K. W. (2013). New Edge Exclusion Proposal, Global 450mm Consortium (NY), SEMICON Taiwan. Retrieve from http://www.semi.org/en/sites/semi.org /files/docs/G450C_New_Edge_Exclusion_Proposal_by_kay_lee_FINAL.pdf
[3]Stegemann, M. , Wege, S. (2001). Technical reports from Infineon Technologies.
[4]Wright, D. R., Chen, L., Federlin, P., & Forbes K. (1995). , Manufacturing issues of electrostatics chucks. Journal of Vacuum Science & Technology B, 13(4), 1910-1917
[5]Daviet, J.-F., Peccoud, L., & Mondon, F. (1993). Electrostatic clamping applied to semiconductor plasma processing I. theoretical. Journal of The Electrochemical Society, 140(11), 3245-3256.
[6]Goodman, D. L. (2008). Effect of wafer bow on electrostatic chucking and back side gas cooling. Journal of Applied Physics. 104(12) 124902.
[7]Tay, A., Chua, H. T., Wang, Y., & Yang, G. (2009, August). Control of semiconductor substrate temperature uniformity during photoresist processing in lithography. Proceedings of the 7th Asian Control Conference, Hong Kong.
[8]Daviet, J.-F., Peccoud, L., & Mondon, F. (1993). Electrostatic clamping applied to semiconductor plasma processing II. Experimental results. Journal of The Electrochemical Society, 140(11) 3256-3261.
[9]Gabriel, C. T. (2002). Wafer temperature measurements during dielectric etching in a MERIE etcher. Journal of Vacuum Science & Technology B, 20(4), 1542-1547
[10]Shan, H., Pu, B. Y., Gao, H., Ke, K. H., Lewis, J., Welch, M., & Deshpandey, C. (1996). Process kit and wafer temperature effects on dielectric etch rate and uniformity of electrostatic chuck. Journal of Vacuum Science & Technology B, 14(1), 521
[11]Olson, K. A., Kotecki, D. E., Ricci, A. J., Lassig, S. E., & Hussian, A. (1995). Characterization, modeling, and design of an electrostatic chuck with improved wafer temperature uniformity. Review of Scientific Instruments, 66(2), 1108-1114
[12]Wright, D. R., Hartman1, D. C., Sridharan, U. C., Kent, M., Jasinski, T., & Kang, S. (1992). Low temperature etch chuck: Modeling and experimental results of heat transfer and wafer temperature. Journal of Vacuum Science & Technology A, 10(4) 1065-1071
[13]Klick, M., & Bernt, M. (2006). Microscopic approach to an equation for the heat flow between wafer and E-chuck. Journal of Vacuum Science & Technology B, 24(6), 2509–2517.
[14]Chan, D.Y., & Halle, B. (1948). The Smoluchowski-Poisson-Boltzmann description of ion diffusion at charged interfaces. Biophysical Journal, 46, 387-407
[15]Hsu, C. C., Titus, M. J., & Graves, D. B. (2007). Measurement and modeling of time- and spatial- resolved wafer surface temperature in inductively coupled plasmas. Journal of Vacuum Science & Technology A, 25(3), 607-613
[16]van Elp, J., Giesen, P.T.M., & de Groof, A.M.M. (2004). Low-thermal expansion electrostatic chuck materials and clamp mechanisms in vacuum and air. Microelectronic Engineering, 73, 941-947
[17]Lim, Y. D., Lee, D. Y., & Yoo, W. J. (2011). Temperature of a semiconducting substrate exposed to an inductively coupled plasma. Journal of the Korean Physical Society, 59(2), 262-270.
[18]Watanabe, T., Kitabayashi, T., & Nakayama, C. (1992). Electrostatic force and absorption current of alumina electrostatic chuck. Japanese Journal of Applied Physics, 31(7), 2145-2150
[19]Watanabe, T., Kitabayashi, T., & Nakayama, C. (1993). Relationship between Electrical Resistivity and Electrostatic Force of Alumina Electrostatic Chuck. Japanese Journal of Applied Physics, 32(2), 864-871
[20]Jeong, K. J., Spoutai, S., Choi, S. H., & Chun, H. G. (1999, June). A study on the fabrication and characterization of alumina electrostatic chuck for silicon wafer processing. Science and Technology, 1999. KORUS ''99. Proceedings. The Third Russian-Korean International Symposium on: Vol 4(pp.532-535), Novosibirsk, Russian
[21]Yatsuzuka, K., Hatakeyama, F., & Asano, K. (2000, October). Fundamental characteristics of electrostatic wafer chuck with insulating sealant. Industry Applications Conference, 1998. Thirty-Third IAS Annual Meeting. The 1998 IEEE:Vol 3(pp. 1733-1738), Missouri, USA
[22]Kalkowski, G., Risse, S., Harnisch, G., & Guyenot, V. (2001). Electrostatic chucks for lithography applications. Microelectronic Engineering, 57, 219-222
[23]Yoo, J., Choi, J. S., Hong, S. J., Kim, T. H., & Lee, S. J. (2007, October). Finite element analysis of the attractive force on a coulomb type electrostatic chuck. International Conference on Electrical Machines and Systems (ICEMS), Seoul, Korea
[24]Sogard, M. R., Mikkelson, A. R., Nataraju, M., Turner, K. T., & Engelstad, R. L. (2007). Analysis of Coulomb and Johnsen-Rahbek electrostatic chuck performance for extreme ultraviolet lithography. Journal of Vacuum Science & Technology B, 25(6), 2155-2161
[25]Shim, G. I., & Sugai, H. (2008). Dechuck Operation of Coulomb Type and Johnsen-Rahbek Type of Electrostatic Chuck Used in Plasma Processing. Journal of Plasma and Fusion Research, 3, 051
[26]Pace, D. K. (2004). Modeling and simulation verification and validation challenges. Johns Hopkins APL Technical Digest, 25(2), 163-172
[27]Cooper, M. G., Mikic, B. B., & Yovanovich, M. M. (1969). Thermal contact conductance. International Journal of Heat and Mass Transfer, 12, 279-300.
[28]Yovanovich, M. M. (2005). Four decades of research on thermal contact, gap, and joint resistance in microelectronics. IEEE Transactions on Components and Packaging Technologies, 28(2), 182-206.
[29]Antonetti, V. W., & Yovanovich, M. M. (1983). Using metallic coatings to enhance thermal contact conductance of electronic packages. Heat Transfer Engineering, 9(3), 85-92.
[30]Bahrami, M., Yovanovich, M. M., & Culham, J. R. (2004). Thermal joint resistances of conforming rough surfaces with gas-filled gaps. Journal of Thermophysics and Heat Transfer, 18(3) 318–325
[31]Hasselström, A. K. J. (2005). Thermal contact conductance in bolted joints (Master thesis, Chalmers University of Technology, Gothenburg, Sweden). Retrieved from http://publications.lib.chalmers.se/records/fulltext/159027.pdf
[32]Yovanovich, M. M., Bahrami, M., & Culham, J. R. (2005, July). Gaussian Roughness in Thermal Contact Conductance. Microtubes and Microfins, ASME Heat Transfer Conference, San Francisco, USA.
[33]Bahrami, M., Culham, J. R.,Yananovich, M. M., & Schneider, G. E. (2006). Review of Thermal Joint Resistance Models for Nonconforming Rough Surfaces. Apply Mechanics Reviews, 59, 1-12
[34]Requirements & Standards Division European Space Agency, Noordwijk, Space
Engineering, Threaded Fasteners Handbook, 2010
[35]Daviet, J.-F., Peccoud, L., & Mondon, F. (1993). Heat transfer in a microelectronics plasma reactor. Journal of Applied Physics, 73(3) 1471-1571.
[36]Jacobs, H. O., Campbell, S. A., & Steward, M. G. (2002). Approaching Nanoxerography: The Use of Electrostatic Forces to Position Nanoparticles with 100 nm Scale Resolution. Journal of Advanced Material, 14(21), 1553-1557
[37]Keum, H., Seong, M., Sinha, S., & Kim, S. (2012). Electrostatically driven collapsible Au thin films assembled using transfer printing for thermal switching. Applied Physics Letters, 100 (21), 211904
[38]Liu, R., Chen, R., Shen, H., & Zhang, R. (2013). Wall Climbing Robot Using Electrostatic Adhesion Force Generated by Flexible Interdigital Electrodes. International Journal of Advanced Robotic Systems, 10 (36) 36-44
[39]Qin, S., & McTeer, A. (2007). Wafer dependence of Johnsen-Rahbek type electrostatic chuck for semiconductor processes. Journal of Applied Physics, 102(6) 064901.
[40]Nakasuji, M., & Shimizu, H. (1992). Low voltage and high speed operating electrostatic wafer chuck. Journal of Vacuum Science & Technology A, 10(6) 3573-3579
[41]Nakasuji, M., Shimizu, H., & Kato, T. (1994). Low voltage and high speed operating electrostatic wafer chuck using sputtered. Journal of Vacuum Science & Technology A, 12(5), 2834-2839
[42]Yang, J. Y., Chen, J. Z., Li, C. H., & Hsu, K. C. (2014, November). Development of Aluminum Nitride Electrostatic-Chuck and Magneto-conductivity Application, National Chung-Shan Institute of Science and Technology (NCSIST), Grand No. 103-EC-17-A-24-0887.
[43]Yildirim, E. D. (2005). A mathematical model of the human thermal system (Master thesis, izmir Institute of Technology, Turkey). Retrieved from http://library.iyte.edu.tr/tezler/master/makinamuh/T000421.pdf
[44]Samir, T. (2003). Improving Wafer Temperature Uniformity For Etch Applications (doctoral dissertation, Texas Tech University). Available from ProQuest Dissertation and theses database. (UMI No. 3108726)
[45]Henningson, D. S., & Berggren, M. (2005). Computational Fluid Dynamics, Lecture handbook of Royal Institute of Technology. Retrieve from http://www2.mech.kth.se/~henning/stromning/CFD_main.pdf
[46]Sofia, J. W. (1995). Fundamentals of Thermal Resistance Measurement. Technical reports of Analysis Tech Inc. Retrieve from http://samunet.hu/extfil/Temperature_

第一頁 上一頁 下一頁 最後一頁 top