跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/06 00:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃榮斌
研究生(外文):Rong-Bin Huang
論文名稱:以暫態熱面法量測奈米流體的熱傳導係數
論文名稱(外文):Measurement of the thermal conductivity of nanofluids via transient hot plate method
指導教授:李雨李雨引用關係
指導教授(外文):U Lei
口試委員:沈弘俊楊政穎
口試委員(外文):Horn-Jiunn SheenCheng-Ying Yang
口試日期:2015-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:65
中文關鍵詞:奈米流體二氧化鈦熱傳導係數黏度體積分率暫態熱源法酸鹼值導電度
外文關鍵詞:NanofluidsTiO2thermal conductivityviscosityvolume fractionelectric conductivitypH
相關次數:
  • 被引用被引用:2
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米流體是液體中穩定地懸浮有奈米粒子(1-100nm)的懸浮液,許多文獻指出在一定體積濃度(或稱體積分率)之下,熱傳導係數隨著體積濃度增加呈正相關,且根據其實驗結果皆高於傳統理論預測值,因此奈米流體的熱傳導機制以及此尺度之下電雙層、群聚效應、布朗運動的研究是相當重要的。本研究14nm、21nm、<50nm、<100nm四種粒子配置的奈米流體,以暫態平面熱源法量測其隨體積分率增加之熱傳係數與整理文獻結果相比較,發現其粒徑並無明顯影響關係,而與粒子的組成成分礦物來源晶形略有影響。另透過加入KCl及NaOH改變奈米流體導電度以及pH值,本文同時量測熱傳導係數以及黏度,兩者均會隨著導電度上升,但會趨於一定值;就pH的變化而言當pH約等於6(等電位點)附近時有峰值,黏度甚至上升至相對基底流體的幾十倍值,此現象乃是pH約等於6值時粒子間的電雙層斥力弱化甚至消失使得粒子間相互吸引至聚結。老化現象在低體積分率的奈米流體效應不明顯,而高體積分率的奈米流體相對於低的來得明顯,其熱傳導係數及黏滯度稍有下降。上述結果與之文獻定性相符,但本文使用了不同的熱傳導系數量測方法,且同時作了更多參數的量測。

Nanofluid is a liquid suspended stably with nano sized particles. It was found in the literature that the thermal conductivity of nanofluid increases as the volume fraction of particles increases, and the increase is substantially greater than that predicted by the classical theory. A large amount of effort was thus spent in studying the behind physics and chemistry, and various effects, including the electric double layer, particle agglomeration, and Brownian motion, were studied. The thermal conductivity of nanofluids with different monometer diameters (14, 22, <50 and <100nm) and volume fractions were measured in the present study using transient hot disk method. It was found that the effect of monomer diameter is small, and the detailed constituent of particles could have effort on thermal conductivity. Effect of electric conductivity and pH were also studied by adding different amount of KCl and NaOH into the nanofluids. The thermal conductivity increases as the electric conductivity increases, but tends to fltten out at large value. As for the effect of pH, the thermal conductivity attains its maximum around pH=6 (the isoelectric point), which can explained by the particle agglomeration effect associated with the weakening of the repulsive double layer force, and was supported by a viscosity measurement ; the nanofluid viscosity increases 2 folds in comparing with that of the base fluid at pH=6. The aging effect is insignificant when the volume fraction is low and is minor at large volume fractions. The above results are qualitatively similar to those in literature, but here we employed a different method for measuring the thermal conductivity, and provided results for a boarder ranges of parameters.

摘要 Ⅰ
Abstract Ⅱ
第一章 緒論 1
1-1前言 1
1-2研究動機與背景 2
1-3文獻回顧 3
1-3-1奈米流體的等校熱傳導係數 3
1-3-2聚結問題 7
1-3-3布朗運動 9
1-3-4奈米流體的應用 11
第二章 實驗原理 14
2-1熱傳導係數測量原理 14
2-2黏度計測量之原理 21
2-3導電度計之測量原理 23
2-4 pH值測量原理 25
2-5電雙層 26
2-6等效顆粒 27
第三章 實驗方法 30
3-1奈米流體配製方法 30
3-2配置不同的奈米流體導電度 34
3-3配置不同pH值之奈米流體 35
3-4黏度測 36
3-5熱傳導係數測量 37
3-6流體導電度對熱傳導係數及黏度影響的量測 38
3-7流體pH值對熱傳導係數以其黏度影響的量測 39
3-8老化現象(Aging effect) 40
第四章 實驗結果 41
4-1不同粒徑及體積分率的熱傳導係數 41
4-2流體導電度對奈米流體熱傳導係數及黏度的影響 46
4-3 pH值對奈米流體黏度與熱傳導係數的影響 52
4-4奈米流體老化效應 56
第五章 結論與未來展望 58
5-1結論 58
5-2未來展望 59
參考文獻 60


[1]Maxwell, J.C.,“A treatise on electricity and magnetism,” Clarendon Press, Oxford 1891.
[2]Choi, S. U. S., “Enhancing thermal conductivity of fluids with nanoparticles,” in Developments and Applications of Non-Newtonian Flows,” D. A. Singer and H. P. Wang, Eds., American Society of Mechanical Engineers, New York, FED–231/MD-66, 99–105 (1995).
[3]Wen, D. and Y. Ding, “Experimental investigation into convective heat transfer of Nanofluids at entrance region under laminar flow conditions, ” Int. J. Heat and Mass Transfer 47, 5181-5188,2004.
[4]Bruggeman, D. and A. G. Berechnung, “verschiedener physikalischer konstanten von heterogenen substanzen, I. Dielektrizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzen, ” Annalen der Physik, Leipzig, 24, 636–679, 1935.
[5]Yu, W. and S. U. S. Choi, “The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model, ”Journal of Nanoparticle Research, 5, 167-171, 2003.
[6]Nan, C. W., R. Birringer, D. R. Clarke and H. Gleiter, “Effective thermal conductivity of particulate composites with interfacial thermal resistance,” Journal of Applied Physics.,81, 6692-6699, 1997.
[7]Das, S. K., “Temperature Dependence of Thermal Conductivity Enhancement for
Nanofluids, ” Journal of Heat Transfer, 125, 567-574, 2003.
[8]Murshed, S. M. S., K. C. Leong and C. Yang, “Enhanced thermal conductivity of TiO2-water based nanofluids,” International Journal of Thermal Sciences, 44, 367-373, 2005.
[9]Paul, G., M. Chopkar, I. Manna and P. K. Das, “Techniques for measuring the
thermal conductivity of nanofluids: A review,” Renewable and Sustainable Energy reviews. 14, 1913-1924, 2010.
[10]He, Y., Y. Jin, H. Chen, Y. Ding, D. Cang and H. Lu, “Heat transfer and flow behavior of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing up ward through a vertical pipe, ”International Journal of Heat and Mass Transfer 50, 2272-2281, 2007.
[11]Wang, X. Q. and A. S. Mujumdar, “Heat transfer characteristics of nanofluids : a review, ” International Journal of Thermal Science, 46 , 1-19, 2007.
[12]Prasher, R., P. Bhattacharya and P. E. Phelan, “Brownian-motion-based convective-conductive model for the effective thermal conductive of nanofluids, ”ASME Journal of Heat Transfer 128, 588-595, 2006.
[13]謝秉倫,“二氧化鈦奈米流體熱傳導性質的實驗探討,” 國立臺灣大學碩士論文, 2014.
[14]Wang, X., X. Xu and S. U. S. Choi, “Thermal conductivity of nanoparticle-fluid mixture,” Journal of Thermal Physics and Heat Transfer, 13, 474-80, 1999.
[15]Choi, S. U. S., Z. G. Zhang, W. Yu, F. E. Lockwood and E. A. Grulke, “Anomalously thermal conductivity enhancement in nanotube suspensions,” Applied. Physics. Letters , 79, 2252-2254, 2001.
[16]Duangthongsuk, W. and S. Wongwise,“ Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids,” Experimental Thermal and Fluid Science , 33, 706-714, 2009.
[17]Xuan, Y. and Q. Li, , “Heat transfer enhancement of nanofluids, ” International Journal of Heat and Fluid Flow, 21, 58-64, 2000.
[18]Wamkam, C. T., M. K. Opoku, H. Hong and P. Smith, “Effects of pH on heat transfer nanofluids containing ZrO2 and TiO2 nanoparticles, ” Journal of Applied Physics. 109, 024305, 2011.
[19]Jiang, J., G. Oberdörster and P. Biswas, “Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies,” Journal of Nanoparticle Reseach. 11, 77-89, 2009.
[20]葉星毅,“二氧化鈦奈米流體黏滯性質的實驗探討,”國立臺灣大學碩士論文,2014.
[21]Keblinski, P., S. Phillpot, S. Choi and J. Eastman, “Mechanisms of heat flow in suspension of nano-sized particles (nanofluids), ”International Journal of Heat and Mass Transfer, 45, 855-863, 2002.
[22]Jang, S. P. and S. U. S. Choi, “Role of Brownian motion in the enhanced thermal conductivity of nanofluids, ” Applied Pysics Letters, 84, 4316-4318, 2004.
[23]Nagarajan, P. K., J. Subramani, S. Suyambazhahan and R. Sathyamurthy , “Nanofluids for solar collector applications,” Energy Procedia, 61, 2416-2434, 2014.
[24]Risi, A. d., M. Milanese and D. Laforgia, “Modelling and optimization of transparent parabolic trough collector based on gas-phase nanofluids,” Renewable Energy, 58, 134-139, 2013.
[25]Wong, K. V. and O. De Leon, “Applications of Nanofluids: Current and Future, ” Advances in Mechanical Engineering, 2010, 519659, 2010.
[26]Mahendran, V. and J. Philip , “Spectral response of magnetic nanofluid to toxic cations, ”Applied Physics Letters, 102, 163109, 2013.
[27]Gustafsson, S. E. “Transient plane source techniques for thermal conductivity and thermal diffusivity measurement of solid materials,” Review of Scientific Instruments, 62, 797-804, 1991
[28]Krupa, P. and S. Malinaric, “Using the Transient Plane Source Method for Measuring Thermal Parameters of Electroceramics,” International Journal of Mathematical, Computational, Natural and Physical Engineering, 8(5), 733-738, 2014.
[29]Nagasaka, Y. and A. Nagashima, “Absolute measurement of thermal conductivity of electrically conducting liquids by the transient hot-wire mthod, ” Journal of Physics E, Scientific Instruments, 14, 1435-1440, 1981.
[30]Wang, X.-J., D.-S. Zhu and S. Yang, “Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids,” Chemical Physics Letters 470, 107–111, 2009.
[31]Li, X. F., D. S. Zhua, X. J. Wang, N. Wang, J. W. Wang and H. L. Gao, “Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids,” Thermochimica Acta, 469, 98–103, 2008.
[32]Longo, G. A. and C. Zilio, “Experimental measurements of thermophysical properties of Al2O3– and TiO2–ethylene glycol nanofluids,” International Journal of Thermophysics, 34, 1288-1307, 2013.
[33]蔡宗翰,“奈米流體熱傳導係數的研究及奈米磁性流體於變壓器上的應用,” 國立臺灣大學博士論文, 2010.
[34]Sarojini, K. G. K., S. V. Nanoj, P. K. Singh, T. Pradeep and S. K. Das, “Electrical conductivity of ceramic and metallic nanofluids, ”Colloids Surfaces A : Physicochemical and Engineering Aspects, 417, 39-46 , 2013.
[35]He, Y., “Rapid thermal conductivity measurement with a hot disk sensor Part 1.Theoretical considerations, ” 436, 122-129, 2005.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王宇清:〈衣色千古──概說服裝色彩種種〉,《聯合文學》第12卷第11期, 1996年9月1日,頁62-66
2. 王安祈:〈羅袂輕揚若有情──談戲曲衣裝〉,《聯合文學》第12卷第11期, 1996年9月1日,頁85-88
3. 王安祈:〈崑劇在臺灣的現代意義〉,《臺大中文學報》第十四期,2001年5月,頁221-257
4. 沈惠如:〈從歷代《牡丹亭》的改編演出看王仁杰縮編本的得失〉,《經國學報》第21期,2004年2月,頁55-75
5. 林克歡:〈90年代大陸表演藝術的走勢(3)戲曲〉,《表演藝術》第25期(1994年11月)頁59-61
6. 徐斯年:〈「移步」而不「換形」──從蘇崑《長生殿》的舞台美術說起〉,《戲曲研究通訊》第四期(2007年1月)頁105-108
7. 曾永義:〈中國戲曲之本質〉,《世新中文研究集刊》第一期,2005年6月,頁23-66
8. 劉權富:〈論電腦燈光與表演藝術之結合〉,《戲劇學刊》第二期(2005)頁131-146
9. 簡立人:〈現代戲劇的光影語彙──燈光營造戲劇美學的設計思考〉,《戲劇學刊》第二期(2005)頁117-130
10. 顧春芳:〈崑曲現代傳播的劇場形式構想〉,《戲曲研究通訊》第四期,2007年1月,頁42-57
11. 李翠芝:〈海派風華的世紀末驚夢──上崑重排全本《牡丹亭》〉,《表演藝術》第83期(1999年11月),頁69-72
12. 紀慧玲:〈傳奇出土,異域還魂──紐約版《牡丹亭》現場目擊〉,《表演藝術》第83期(199年11月),頁73-82
 
無相關點閱論文