跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/02 00:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃柏智
研究生(外文):Po-Chih Huang
論文名稱:牆效應對球狀粒子黏性阻力矩的影響
論文名稱(外文):On the wall effect of viscous torques on spherical particles
指導教授:李雨李雨引用關係
指導教授(外文):U Lei
口試委員:沈弘俊楊政穎
口試委員(外文):Horn-Jiunn SheenCheng-Ying Yang
口試日期:2015-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:63
中文關鍵詞:黏性阻力矩牆效應介電泳電旋轉雙頻率操作光鉗
外文關鍵詞:Viscous resistive torqueWall effectsDielectrophoresisElectrorotationDual-frequency operationOptical tweezers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
球狀微小粒子在液體中轉動時所承受的黏性阻力矩是一項基本的力學課題,並在微奈米科技及其應用上(如細胞的介電性檢測、微奈米粒子的定向及定位)扮演重要的角色。傳統流體力學文獻中已有黏性阻力矩在無窮域及固體邊界修正的理論公式,但尚缺實驗驗證。
廣義介電泳為透過施加電場以非接觸性方式來操控粒子的工具,包含傳統介電泳、旅波式介電泳及電旋轉;本文以廣義介電泳為基礎工具且光鉗為輔,發展一非接觸性的實驗方法來研究在微流道之中的Sephadex微粒在靠近固體壁面的黏性阻力矩。本實驗以簡易的微機電製程製作實驗裝置,以傳統介電泳和光鉗對粒子作空間定位,以電旋轉來驅策粒子轉動,利用介電泳力矩與黏性阻力矩平衡來量測後者,其中介電泳力矩透過由數值求解所得的電場計算而得;另量測粒子轉速,以求取牆效應的修正因子。經與流體力學理論公式比較,本文實驗所獲修正因子與理論值比較相差在10%;另與前人(黃佳慶)實驗結果(較理論值高0.5-38%)比較,本文結果是較一致性且較集中的。在實驗裝置方面,前人所用者為一具四道電極組的電旋轉槽,而本文所用者為一具八道電極的電旋轉槽,其中四道電極一組與前人者同,新增的另一組四電極可以不同電頻率對粒子施加傳統介電泳力,以達到更佳的粒子位置操控。


Viscous resistive torque on a small spherical particle in fluid is fundamental in mechanics, and plays a crucial role in micro and nano technology and their application (characterization of dielectric properties of cells, positioning and orientation of micro and nano particles, for example). Analytical expressions for viscous torque on a spherical particle in an infinite fluid domain and in the vicinity of a solid boundary (or boundaries) are available in the fluid mechanics literatures, but were not fully explored experimentally.
Generalized dielectrophoresis is a non-contact method for particle manipulation via applying an appropriate electric field; it includes conventional dielectrophoresis, travelling wave dielectrophoresis and electrorotation. The experimental method of the present study is based on generalized dielectrophoresis together with an optical tweezer. The device was fabricated via standard MEMS techniques, using conventional dielectrophoresis and optical tweezer for particle positioning, and electrorotation for turning the particle. The viscous torque on the particle was measured by balancing it with the dielectrophoretic torque, which was calculated using the electric field of the device obtained numerically. The rotating speed of the particle was also measured and employed for estimating the wall correction factor of the viscous torque. Comparing with those predicted theoretically based on fluid mechanics, the error of data is found within 10%. In comparing with the previous experiment (Ref. [44], 0.5-38% greater than the theoretical prediction), the present data are more consistent and concentrated. The previous experiment was performed using a four-electrode electrorotation chamber, while the present experiment employed an eight-electrode chamber, with a set of four electrodes the same as in the previous experiment. An additional set of four electrodes was employed for exerting additional conventional dielectrophoretic force to the particle using different electric frequency, which is more helpful for particle positioning in the experiment.


口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
圖目錄 ix
表目錄 xii
第1章 緒論 1
1.1 研究背景與動機 1
1.2 文獻探討 2
1.2.1 介電泳 2
1.2.2 黏性阻力矩 3
1.2.3 光鉗 3
1.3 本文目標 4
第2章 理論背景 5
2.1 靜電場 5
2.2 廣義介電泳 6
2.2.1 柯莫氏因子 6
2.2.2 傳統介電泳 7
2.2.3 介電泳力及介電泳力矩 7
2.3 黏性阻力矩 10
2.4 光鉗系統 11
2.5 力平衡及力矩平衡 11
2.6 其他影響力之探討 13
2.6.1 電泳力 13
2.6.2 布朗運動 13
第3章 實驗方法與設備 15
3.1 電極設計與製作 15
3.1.1 電極晶片基板材料 15
3.1.2 電極金屬材料 15
3.1.3 電極幾何排列設計 16
3.1.4 光罩選擇與製作 16
3.1.5 金屬薄膜沉積 17
3.2 電極晶片製程 17
3.2.1 基材清潔 17
3.2.2 金屬蒸鍍 18
3.2.3 光阻塗佈 19
3.2.4 軟烤 20
3.2.5 曝光 20
3.2.6 顯影 20
3.2.7 硬烤 21
3.2.8 金蝕刻 21
3.2.9 鉻蝕刻 21
3.2.10 去光阻 21
3.3 微流道母模製程 21
3.3.1 光阻塗佈 22
3.3.2 軟烤 22
3.3.3 曝光 22
3.3.4 曝後烤 22
3.3.5 顯影 23
3.3.6 硬烤 23
3.4 微流道翻模製程 23
3.4.1 調配PDMS 23
3.4.2 接合製程(Bonding) 23
3.5 雷射光鉗系統 24
3.5.1 雷射系統 24
3.5.2 擴束系統 (Beam Expander;BE) 24
3.5.3 極化分光稜鏡 (Polarization Beam Splitter;PBS) 25
3.5.4 聚焦物鏡 (100x Objective) 25
3.5.5 Charge-Coupled Device影像系統(感光耦合元件;CCD) 25
3.5.6 濾鏡(Filter) 25
3.6 實驗設備 26
3.6.1 光學桌 26
3.6.2 光學量測系統 26
3.6.3 訊號產生器(Function Generator) 26
3.6.4 超音波震洗機 26
3.6.5 導電度計(Conductivity meter) 26
3.6.6 實驗微粒 27
3.7 實驗溶液選取及其導電度調配 27
3.8 實驗流程 27
第4章 實驗結果與討論 29
4.1 數值計算模擬 29
4.2 實驗數據紀錄 30
4.3 實驗數據與討論 30
第5章 結論與未來工作 33
5.1 結論 33
5.2 未來工作 33
參考文獻 34


[1]Pohl, H. A., “The motion and precipitation of suspensoids in divergent electric field,” J. Appl. Phys, 22,, 869-871, 1951.
[2]Pohl, H. A., Dielectrophoresis, Cambridge University Press, Cambridge, 1978.
[3]Jones, T. B., Electromechanics of particles, Cambridge University Press, Cambridge, 1995
[4]Jones, T. B. , “Basic theory of dielectrophoresis and electrorotation,” IEEE Engineering in Medicine and Biology, 22, 33-42, 2003.
[5]Hughes, M. P., “Nanoelectromechanics in Engineering and Biology,” CRC Press, 2003.
[6]Pethig, R., “Dielectrophoresis: status of the theory, technology, and applications,” Biomicrofluidics, 4, 022811, 2010.
[7]Wang, X.-B., Huang, Y., Becker, F. F., and Gascoyne, P. R. C., “A unified theory of dielectrophoresis and travelling wave dielectrophoresis,” J. Phys. D: Appl. Phys., 27, 1571-1574, 1994.
[8]Lei, U. and Lo, Y. J., “Review of the theory of generalised dielectrophoresis,” IET Nanobiotechnology, 5(3), 86-106, 2011.
[9]Masuda, S., Washizu, M., and Iwadare, M., “Separation of Small Particles Suspended in Liquid by Nonuniform Traveling Field,” IEEE Trans. Ind. Appl., 23, 474-480, 1987.
[10]Masuda, S., Washizu, M., and Kawabata, I., “Movement of blood cells in liquid by nonuniform traveling wave,” IEEE Trans. Ind. Appl., 24, 217-222, 1988.
[11]Gascoyne, P. R. C. and Vykoukal, J., “Particle separation by dielectrophoresis,” Electrophoresis, 23, 1973-1983, 2002.
[12]Hughes, M. P., “Strategies for dielectrophoretic separation in laboratory on-a-chip systems,” Electrophoresis, 23, 2569-2582, 2002.
[13]Hu, X. Y., Bessette, P. H., Qian, J. R., Meinhart, C. D., Daugherty, P. S., and Soh, H. T., “Marker-specific sorting of rare cells using dielectrophoresis ,” Proceedings of the National Academy of Sciences of the United States of America, 102(44), 15757-15761, 2005.
[14]Flanagan, L. A., Lu, J., Wang, L., Marchenko, S. A., Jeon, N. L., Lee, A. P., and Monuki, E. S., “Unique dielectric properties distinguish stem cells and their differentiated progeny,” Stem Cells, 26, 656-665, 2008.
[15]Pethig, R., Menachery, A., Pells, S., and Sousa, P. D., “Dielectrophoresis: a review of applications for stem cell research,” J. Biomed. Biotechnol., 2010, 182581, 2010.
[16]Lo, Y. J. and Lei, U., “Quasistatic force and torque on a spherical particle under generalized dielectrophoresis in the vicinity of walls,” Applied Physics Letters, 95(25), 253701, 2009.
[17]Lo, Y. J. and Lei, U., “Experimental validation of the theory of wall effect on dielectrophoresis,” Applied Physics Letters, 97(9), 093702, 2010.
[18]Lamb, H., Hydrodynamics, Cambridge University Press, Cambridge, 1932.
[19]Waters, N. D. and Gooden, D. K., “The couple on a rotating oblate spheroid in an elastico-viscous liquid,” Q J Mechanics Appl. Math, 33(2), 189-209, 1980.
[20]Brenner, H., “The Stokes resistance of a slightly deformed sphere,” Chemical Engineering Science, 19(8), 519-539, 1964.
[21]Kunesh, J. G., Brenner, H., O’neill, M. E., and Falade, A., “Torque measurements on stationary axially positioned sphere partially and fully submerged beneath the free surface of a slowly rotating viscous fluid,” J. Fluid Mech., 154, 29-42, 1985.
[22]Happel, J. and Brenner, H., Low Reynolds number hydrodynamics, Martinus Nijhoff Publishers,Dordrecht , 1986.
[23]Ashkin, A., “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett., 24, 156-159, 1970.
[24]Ashkin, A. and Dziedzic, J. M., “Optical Levitation by Radiation Pressure,” Appl. Phys. Lett., 19, 283-285, 1971.
[25]Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., and Chu, S., “Observation of a single-beam gradient force optical trap for dielectric particles,” Optics. Lett., 11, 288, 1986.
[26]Ashkin, A. and Dziedzic, J. M., “Optical Trapping and Manipulation of Viruses and Bacteria,” Science, 235, 1517-1520, 1987.
[27]Ashkin, A., “Forces of single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J., 61, 569-582, 1992.
[28]Yang, C. Y. and Lei, U., “Dielectrophoretic force and torque on an ellipsoid in an arbitrary time varying electric field,” Applied Physics Letters, 90(15), 153901, 2007a.
[29]Yang, C. Y. and Lei, U., “Quasistatic force and torque on ellipsoidal particles under generalized dielectrophoresis,” J. Appl. Phys., 102(9), 094702, 2007b.
[30]Reichle, C., Schnelle, T., Müller, T., Leya, T., and Fuhr, G., “A new microsystem for automated electrorotation measurements using laser tweezers,” Biochimica et Biophysica Acta, 1459, 218-229, 2000.
[31]Pethig, R. and Markx, G. H., “Applications of dielectrophoresis in biotechnology,” Trends in Biotechnology, 15(10), 426-432, 1997.
[32]Ishikawa, A., Hanai, T., and Koizumi, N., “Dielectric Properties of Dextran Gel Sephadex G-25 Dispersed in Aqueous Phases,” Japanese Journal of Applied Physics, 12(21), 1762-1768, 1982.
[33]Pethig, R., Huang, Y., Wang, X.-B., and Burt, J. P. H., “Positive and negative dielectrophoretic collection of colloidal particles using interdigitated castellated microelectrodes,” J. Phys. D: Appl. Phys., 25, 881-888, 1992.
[34]Wang, X.-B., Huang, Y., Gascoyne, P. R. C., Becker, F. F., Hölzel, R. and Pethig, R., “Changes in Friend murine erythroleukaemia cell membranes during induced differentiation determined by electrorotation,” Biochimica et Biophysica Acta, 1193, 330-344, 1994.
[35]Becker, F. F., Wang, X.-B., Huang, Y., Pethig, R., Vykoukal, J., and Gascoyne, P. R. C., “Separation of human breast cancer cells form blood by differential dielectric affinity,” Proceedings of the National Academy of Sciences of the United States of America, 92, 860-864, 1995.
[36]Yang, C. Y. and Lei, U., “Dielectrophoretic force and torque on a sphere in an arbitrary time varying electric field,” Applied Physics Letters, 89(16), 163902, 2006.
[37]Lo, Y. J., “Generalized dielectrophoresis near walls-theory, experiment and application,” Ph.D. dissertation, National Taiwan University, Taiwan, 2010.
[38]Goater, A. D. and Pethig, R., “Electrorotation and dielectrophoresis,” Parasitology, 117(7), 177-189, 1998.
[39]Reichle, C., Müller, T., Schnelle, T., and Fuhr, G., “Electro-rotation in octopole micro cages,” J. Phys. D: Appl. Phys., 32, 2128-2135, 1999.
[40]Bowden, F. P. and Lord, R. G., “The aerodynamic resistance to a sphere rotating at high speed,” Proc. R. Soc. Lond. A, 271, 143-153, 1963.
[41]Sawatzki, O., “Flow field around a rotating sphere,” Acta Mech., 9, 159-214, 1970.
[42]Lo, Y. J., Lei, U., Chen, K. Y., Lin, Y. Y., Huang, C. C., Wu, M. S. and Yang, P. C., “Derivation of the cell dielectric properties based on Clausius-Mossotti factor,” Applied Physics Letters, 104(11), 113702, 2014.
[43]Lin, Y. Y., “Measurement of the imaginary part of the Clausius-Mossotti factor of generalized dielectrophoresis and its application to deriving cell dielectric properties,” Ph.D. dissertation, National Taiwan University, 2014.
[44]黃佳慶, “利用光鉗與廣義介電泳量測近牆效應下圓球的黏性阻力矩,” 國立臺灣大學應用力學研究所碩士論文, 2012.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top