跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 03:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:韋嘉茹
研究生(外文):Chia-Ju Wei
論文名稱:應用半古典橢圓統計格子波茲曼法模擬並排雙圓柱尾流流場特性
論文名稱(外文):Application of Semiclassical Lattice Boltzmann-Ellipsoidal Statistical Method to Simulate Wake Patterns of Flow Past A Pair of Cylinders in Side-by-side Arrangements
指導教授:楊照彥
口試委員:黃美嬌黃俊誠湯國樑
口試日期:2015-06-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:72
中文關鍵詞:半古典格子波茲曼方法D2Q9格子速度模型橢圓統計BGK方程沉浸邊界速度修正法雙圓柱尾流
外文關鍵詞:Semiclassical Lattice Boltzmann methodD2Q9 lattice modelEllipsoidal Statistical BGK equationImmersed Boundary Velocity Correction Methodtwo cylindersflow patterns
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
流體力學在連體模型中多以Navier-Stokes方程式或Euler方程式求解,而當氣體流場的稀薄程度增加時,這兩種統御方程式皆已不符合稀薄氣體動力學之條件,此時適用的統御方程式為波茲曼方程,且在做數值模擬計算時,會將波茲曼方程經空間、時間和速度離散推導出格子波茲曼方程。
以Uehling-Uhlenbeck Boltzmann-BGK方程(Uehling-Uhlenbeck Boltzmann Bhatnagar-Gross-Krook Equation)以及橢圓統計BGK方程(Ellipsoidal Statistical BGK Equation)為基礎,發展出半古典橢圓統計格子波茲曼法,亦使用四階Hermite多項式展開將半古典橢圓統計平衡態分布函數展開成離散型式,求得分布函數後計算出流場的巨觀物理量,並可藉由Chapman-Enskog分析使格子波茲曼方程推導回Navier-Stokes方程,及得到鬆弛時間與黏滯係數間的關係。
使用D2Q9格子速度模型以及沉浸邊界速度修正法處理物體邊界,對均勻流流經並排雙圓柱的流場問題,模擬Bose-Einstein統計、Fermi-Dirac統計和Maxwell-Boltzmann統計的粒子以及不同普朗特數的修正量,在低雷諾數範圍和圓柱之不同間距值的條件下,圓柱尾流形狀依其流場流線、渦度、升力係數和阻力係數特性,分為兩種穩態和五種非穩態類型,依序為異形、同形、單一扁平、偏向、正反、同步同相和同步反相流型。


The Navier-Stokes equation or Euler equation is traditionally used to solve solutions in the continuum regime of fluid dynamics. However, while the gas flow is rarefied, the government equation should become Boltzmann equation. The lattice Boltzmann method is derived by discretizing with Boltzmann equation in physical and velocity space for numerical simulation.
Based on the Uehling-Uhlenbeck Boltzmann-BGK equation and Ellipsoidal Statistical BGK equation, a semiclassical lattice Boltzmann ellipsoidal statistical method is developed. The semiclassical equilibrium distribution function for ellipsoidal statistical method can be expanded by fourth-order Hermite polynomials, and the relationship between relaxation time and viscosity can be obtained by using Chapman-Enskog analysis.
Under D2Q9 lattice model, uniform flow past a pair of cylinders in side-by-side arrangements has been simulated with immersed boundary velocity correction method which is used to describe the boundary of cylinders. At low Reynolds numbers and by varying cylinders spacing ratios, seven different wake patterns were systematically categorized. Simulations under Bose-Einstein, Fermi-Dirac and Maxwell-Boltzmann statistics including the corrections of Prandtl numbers are also presented.


誌謝 I
中文摘要 II
ABSTRACT III
目錄 IV
圖目錄 VI
表目錄 VII
符號 VIII
第一章 緒論 1
1-1 計算流體力學 1
1-2 格子波茲曼法簡介 1
1-3 文獻回顧 2
1-4 本文目的 3
1-5 本文架構 3
第二章 波茲曼方程式 6
2-1 稀薄氣體動力學 6
2-2 分布函數 8
2-3 波茲曼方程式 8
2-4 波茲曼H定理 11
2-5 馬克斯威爾分布 13
2-6 波茲曼BGK方程 14
2-7 格子波茲曼方程 15
2-8 HERMITE展開平衡態分布函數 18
第三章 半古典格子波茲曼法 22
3-1 理想量子氣體動力學 22
3-2 HERMITE展開平衡態分布函數 23
3-3 巨觀量求法 30
3-4 CHAPMAN-ENSKOG分析 32
第四章 半古典橢圓統計格子波茲曼法 36
4-1 半古典橢圓統計格子波茲曼方程 36
4-2 HERMITE展開平衡態分布函數 36
4-3 巨觀量求法 39
4-4 CHAPMAN-ENSKOG分析 40
第五章 基本模型與邊界處理方法 45
5-1 半古典橢圓統計格子波茲曼法 45
5-2 並排雙圓柱繞流問題描述 46
5-3 邊界條件 47
5-3-1 沉浸邊界速度修正法 47
5-3-2 標準反彈邊界 49
5-4 收斂條件及計算流程 49
第六章 模擬結果與討論 51
6-1 模擬參數 51
6-2 模擬結果討論 53
第七章 結論與未來展望 67
7-1 結論 67
7-2 未來展望 68
參考文獻 70


[1]U. Frisch, B. Hasslacher, and Y. Pomeau, "Lattice-gas automata for the Navier-Stokes equation," Physical Review Letters, vol. 56, pp. 1505-1508, 1986.
[2]Y. Qian, D. d''Humières, and P. Lallemand, "Lattice BGK models for Navier-Stokes equation," EPL (Europhysics Letters), vol. 17, p. 479, 1992.
[3]P. L. Bhatnagar, E. P. Gross, and M. Krook, "A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems," Physical review, vol. 94, p. 511, 1954.
[4]X. He and L.-S. Luo, "Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation," Physical Review E, vol. 56, p. 6811, 1997.
[5]X. Shan, X.-F. Yuan, and H. Chen, "Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation," Journal of Fluid Mechanics, vol. 550, pp. 413-441, 2006.
[6]J.-Y. Yang and L.-H. Hung, "Lattice Uehling-Uhlenbeck Boltzmann-Bhatnagar-Gross-Krook hydrodynamics of quantum gases," Physical Review E, vol. 79, p. 056708, 2009.
[7]J. Meng, Y. Zhang, N. G. Hadjiconstantinou, G. A. Radtke, and X. Shan, "Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows," Journal of Fluid Mechanics, vol. 718, pp. 347-370, 2013.
[8]L. Wu, J. Meng, and Y. Zhang, "Kinetic modelling of the quantum gases in the normal phase," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, vol. 468, pp. 1799-1823, 2012.
[9]R. C. Coelho, A. Ilha, M. Doria, R. Pereira, and V. Y. Aibe, "Lattice Boltzmann method for bosons and fermions and the fourth order Hermite polynomial expansion," arXiv preprint arXiv:1311.6535, 2013.
[10]C. S. Peskin, “Numerical analysis of glood flow in the heart,” Journal of Computational Physics, vol. 25, pp. 220-252, 1977.
[11]Z.-G. Feng and E. E. Michaelides, “The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems,” Journal of Computational Physics, vol. 195, pp. 602-629, 2004.
[12]C. Shu, N. Liu and Y. Chew, ”A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular cylinder,” Journal of Computational Physics, vol. 226, pp. 1607-1622, 2007.
[13]G. A. Bird, "Molecular gas dynamics and the direct simulation of gas flows," 1994.
[14]沈清, 稀薄氣體動力學(Rarefied Gas Dynamics). 北京: 國防工業出版社, 2003.
[15]H. Grad, "Note on N‐dimensional hermite polynomials," Communications on Pure and Applied Mathematics, vol. 2, pp. 325-330, 1949.
[16]B. C. Eu and K. Mao, "Quantum kinetic theory of irreversible thermodynamics: Low-density gases," Physical Review E, vol. 50, p. 4380, 1994.
[17]J. F. Lutsko, "Approximate solution of the Enskog equation far from equilibrium," Physical Review Letters, vol. 78, p. 243, 1997.
[18]P. A. Dirac, "On the theory of quantum mechanics," Proceedings of the Royal Society A, vol. 112, pp. 661-677, 1926.
[19]A. Einstein, Quantentheorie des einatomigen idealen Gases: Akademie der Wissenshaften, in Kommission bei W. de Gruyter, 1924.
[20]洪立昕, "半古典晶格波滋曼方法," 臺灣大學應用力學研究所學位論文, 2010.
[21]蔡博臣, "基於半古典橢圓統計波茲曼方程之格子波茲曼法," 臺灣大學應用力學研究所學位論文, 2013.
[22]H. Struchtrup, Macroscopic transport equations for rarefied gas flows: Springer, 2005.
[23]H. J. Kim and P. A. Durbin, “Investigation of the flow between a pair of circular cylinders in the flipping regime,” Journal of Fluid Dynamics, vol. 196, pp. 431-448, 1988.
[24]S. Kang, “Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers,” Physics of Fluids, vol. 15, pp. 2486-2498, 2003.
[25]K. Liu, D. J. Ma, D. J. Sun and X. Y. Yin, “Wake patterns of flow past a pair of circular cylinders in side-by-side arrangements at low Reynolds numbers,” Journal of Hydrodynamics, vol. 16(6), pp. 690-697, 2007.
[26]S. Chen, D. Martinez, and R. Mei, "On boundary conditions in lattice Boltzmann methods," Physics of Fluids (1994-present), vol. 8, pp. 2527-2536, 1996.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top