# 臺灣博碩士論文加值系統

(18.205.192.201) 您好！臺灣時間：2021/08/05 03:02

:::

### 詳目顯示

:

• 被引用:0
• 點閱:128
• 評分:
• 下載:0
• 書目收藏:0
 流體力學在連體模型中多以Navier-Stokes方程式或Euler方程式求解，而當氣體流場的稀薄程度增加時，這兩種統御方程式皆已不符合稀薄氣體動力學之條件，此時適用的統御方程式為波茲曼方程，且在做數值模擬計算時，會將波茲曼方程經空間、時間和速度離散推導出格子波茲曼方程。以Uehling-Uhlenbeck Boltzmann-BGK方程(Uehling-Uhlenbeck Boltzmann Bhatnagar-Gross-Krook Equation)以及橢圓統計BGK方程(Ellipsoidal Statistical BGK Equation)為基礎，發展出半古典橢圓統計格子波茲曼法，亦使用四階Hermite多項式展開將半古典橢圓統計平衡態分布函數展開成離散型式，求得分布函數後計算出流場的巨觀物理量，並可藉由Chapman-Enskog分析使格子波茲曼方程推導回Navier-Stokes方程，及得到鬆弛時間與黏滯係數間的關係。使用D2Q9格子速度模型以及沉浸邊界速度修正法處理物體邊界，對均勻流流經並排雙圓柱的流場問題，模擬Bose-Einstein統計、Fermi-Dirac統計和Maxwell-Boltzmann統計的粒子以及不同普朗特數的修正量，在低雷諾數範圍和圓柱之不同間距值的條件下，圓柱尾流形狀依其流場流線、渦度、升力係數和阻力係數特性，分為兩種穩態和五種非穩態類型，依序為異形、同形、單一扁平、偏向、正反、同步同相和同步反相流型。
 The Navier-Stokes equation or Euler equation is traditionally used to solve solutions in the continuum regime of fluid dynamics. However, while the gas flow is rarefied, the government equation should become Boltzmann equation. The lattice Boltzmann method is derived by discretizing with Boltzmann equation in physical and velocity space for numerical simulation.Based on the Uehling-Uhlenbeck Boltzmann-BGK equation and Ellipsoidal Statistical BGK equation, a semiclassical lattice Boltzmann ellipsoidal statistical method is developed. The semiclassical equilibrium distribution function for ellipsoidal statistical method can be expanded by fourth-order Hermite polynomials, and the relationship between relaxation time and viscosity can be obtained by using Chapman-Enskog analysis.Under D2Q9 lattice model, uniform flow past a pair of cylinders in side-by-side arrangements has been simulated with immersed boundary velocity correction method which is used to describe the boundary of cylinders. At low Reynolds numbers and by varying cylinders spacing ratios, seven different wake patterns were systematically categorized. Simulations under Bose-Einstein, Fermi-Dirac and Maxwell-Boltzmann statistics including the corrections of Prandtl numbers are also presented.
 誌謝 I中文摘要 IIABSTRACT III目錄 IV圖目錄 VI表目錄 VII符號 VIII第一章 緒論 11-1 計算流體力學 11-2 格子波茲曼法簡介 11-3 文獻回顧 21-4 本文目的 31-5 本文架構 3第二章 波茲曼方程式 62-1 稀薄氣體動力學 62-2 分布函數 82-3 波茲曼方程式 82-4 波茲曼H定理 112-5 馬克斯威爾分布 132-6 波茲曼BGK方程 142-7 格子波茲曼方程 152-8 HERMITE展開平衡態分布函數 18第三章 半古典格子波茲曼法 223-1 理想量子氣體動力學 223-2 HERMITE展開平衡態分布函數 233-3 巨觀量求法 303-4 CHAPMAN-ENSKOG分析 32第四章 半古典橢圓統計格子波茲曼法 364-1 半古典橢圓統計格子波茲曼方程 364-2 HERMITE展開平衡態分布函數 364-3 巨觀量求法 394-4 CHAPMAN-ENSKOG分析 40第五章 基本模型與邊界處理方法 455-1 半古典橢圓統計格子波茲曼法 455-2 並排雙圓柱繞流問題描述 465-3 邊界條件 475-3-1 沉浸邊界速度修正法 475-3-2 標準反彈邊界 495-4 收斂條件及計算流程 49第六章 模擬結果與討論 516-1 模擬參數 516-2 模擬結果討論 53第七章 結論與未來展望 677-1 結論 677-2 未來展望 68參考文獻 70
 [1]U. Frisch, B. Hasslacher, and Y. Pomeau, "Lattice-gas automata for the Navier-Stokes equation," Physical Review Letters, vol. 56, pp. 1505-1508, 1986.[2]Y. Qian, D. d''Humières, and P. Lallemand, "Lattice BGK models for Navier-Stokes equation," EPL (Europhysics Letters), vol. 17, p. 479, 1992.[3]P. L. Bhatnagar, E. P. Gross, and M. Krook, "A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems," Physical review, vol. 94, p. 511, 1954.[4]X. He and L.-S. Luo, "Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation," Physical Review E, vol. 56, p. 6811, 1997.[5]X. Shan, X.-F. Yuan, and H. Chen, "Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation," Journal of Fluid Mechanics, vol. 550, pp. 413-441, 2006.[6]J.-Y. Yang and L.-H. Hung, "Lattice Uehling-Uhlenbeck Boltzmann-Bhatnagar-Gross-Krook hydrodynamics of quantum gases," Physical Review E, vol. 79, p. 056708, 2009.[7]J. Meng, Y. Zhang, N. G. Hadjiconstantinou, G. A. Radtke, and X. Shan, "Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows," Journal of Fluid Mechanics, vol. 718, pp. 347-370, 2013.[8]L. Wu, J. Meng, and Y. Zhang, "Kinetic modelling of the quantum gases in the normal phase," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, vol. 468, pp. 1799-1823, 2012.[9]R. C. Coelho, A. Ilha, M. Doria, R. Pereira, and V. Y. Aibe, "Lattice Boltzmann method for bosons and fermions and the fourth order Hermite polynomial expansion," arXiv preprint arXiv:1311.6535, 2013.[10]C. S. Peskin, “Numerical analysis of glood flow in the heart,” Journal of Computational Physics, vol. 25, pp. 220-252, 1977.[11]Z.-G. Feng and E. E. Michaelides, “The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems,” Journal of Computational Physics, vol. 195, pp. 602-629, 2004.[12]C. Shu, N. Liu and Y. Chew, ”A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular cylinder,” Journal of Computational Physics, vol. 226, pp. 1607-1622, 2007.[13]G. A. Bird, "Molecular gas dynamics and the direct simulation of gas flows," 1994.[14]沈清, 稀薄氣體動力學（Rarefied Gas Dynamics）. 北京: 國防工業出版社, 2003.[15]H. Grad, "Note on N‐dimensional hermite polynomials," Communications on Pure and Applied Mathematics, vol. 2, pp. 325-330, 1949.[16]B. C. Eu and K. Mao, "Quantum kinetic theory of irreversible thermodynamics: Low-density gases," Physical Review E, vol. 50, p. 4380, 1994.[17]J. F. Lutsko, "Approximate solution of the Enskog equation far from equilibrium," Physical Review Letters, vol. 78, p. 243, 1997.[18]P. A. Dirac, "On the theory of quantum mechanics," Proceedings of the Royal Society A, vol. 112, pp. 661-677, 1926.[19]A. Einstein, Quantentheorie des einatomigen idealen Gases: Akademie der Wissenshaften, in Kommission bei W. de Gruyter, 1924.[20]洪立昕, "半古典晶格波滋曼方法," 臺灣大學應用力學研究所學位論文, 2010.[21]蔡博臣, "基於半古典橢圓統計波茲曼方程之格子波茲曼法," 臺灣大學應用力學研究所學位論文, 2013.[22]H. Struchtrup, Macroscopic transport equations for rarefied gas flows: Springer, 2005.[23]H. J. Kim and P. A. Durbin, “Investigation of the flow between a pair of circular cylinders in the flipping regime,” Journal of Fluid Dynamics, vol. 196, pp. 431-448, 1988.[24]S. Kang, “Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers,” Physics of Fluids, vol. 15, pp. 2486-2498, 2003.[25]K. Liu, D. J. Ma, D. J. Sun and X. Y. Yin, “Wake patterns of flow past a pair of circular cylinders in side-by-side arrangements at low Reynolds numbers,” Journal of Hydrodynamics, vol. 16(6), pp. 690-697, 2007.[26]S. Chen, D. Martinez, and R. Mei, "On boundary conditions in lattice Boltzmann methods," Physics of Fluids (1994-present), vol. 8, pp. 2527-2536, 1996.
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 應用PIV與FLDV於二維並列雙圓柱尾流流場特性之探討 2 半古典Shakhov模型格子波茲曼法之發展與流場模擬 3 結合沉浸邊界速度修正法之半古典橢圓統計格子波茲曼流場模擬 4 多鬆弛時間半古典橢圓統計格子波茲曼法之流場模擬 5 基於半古典橢圓統計波茲曼方程之格子波茲曼法 6 多鬆弛時間半古典格子波茲曼法之發展與流場模擬

 1 方世榮，「關係價值關係品質與忠誠度之探討-零售銀行業的實證研究」，管理學報，第19卷，第6期，2002年，頁1097-1130。 2 何雍慶、蘇子炘、張永富，「消費者體驗與訊息路徑對品牌延伸購買態度之影響」，行銷評論，2004年，第一卷，第一期，pp1-20 3 范碧珍，「體驗是顧客滿意的原動力」，突破雜誌，第213卷，2003年，頁46-53。 4 侯毓昌、黃文鴻，「中醫醫院門診病人選擇醫院之考慮因素及就醫滿意度研究－以臺中市七家中醫醫院為例」，中華公共衛生雜誌，1999，18 (1)，34-43。 5 翁瑞宏、何雍慶、邱柏松、黃靖媛，「醫療服務業顧客認知關係品質與忠誠度關係之理論模型建構」，醫務管理期刊，2004年，Vol.5 No.4，頁418-437。 6 蘇子炘、何雍慶，「醫療消費體驗量表之初探」，顧客滿意學刊，第二卷，第一期，2006年，pp55-76

 無相關點閱論文

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室