跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 19:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張雯琪
研究生(外文):Wenchi Chang
論文名稱:研製分佈式感應子及壓電致動器應用之光壓電材料
論文名稱(外文):Developing Optopiezoelectric Materials for Distributed Sensors and Piezoelectric Actuators
指導教授:李世光李世光引用關係
指導教授(外文):Chih-Kung Lee
口試委員:謝宗霖饒達仁謝志文林致廷許聿翔
口試委員(外文):Jay ShiehDa-Jeng YaoChih-Wen HsiehChih-Ting LinYu-Hsiang Hsu
口試日期:2015-07-08
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:107
中文關鍵詞:蠕蟲侷限微流道光壓電光敏材料
外文關鍵詞:Worm immobilization microfluidicsOptopiezoelectricPhotosensitive material
相關次數:
  • 被引用被引用:0
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微操控技術於近年來蓬勃發展於微機電設備、生物晶片以及微流體系統。自十九世紀末,原子力學顯微鏡、光鉗與磁鉗被實現於操控單一細胞或原子;熱泳、介電泳與介電濕潤等非接觸式操控技術也相繼被提出,來提高控制待測物的力量與效率,並且降低傷害樣品的風險。近年來,許多感光複合材料相繼被開發並應用於操控技術中,使用快速變換的光照圖樣,改變晶片中局部電場或熱場,進而達成操控微物體的效果。然而,傳統的光調變技術,僅提供或感測奈米牛頓等級的力學場,故本論文提出光壓電複合材料,將光敏材料與壓電材料結合,藉由照光圖樣局部調變壓電的電場與力學場,並將驅動或感測的力學場數量級提升10^6數量級 。本論文於第三章,以直流偏壓175伏特驅動微流道系統中的壓電片,有效侷限蠕蟲運動範圍。於第四章,使用感光染料(spiropyran)/液晶複合壓電片(PZT),研製光壓電懸臂樑致動器,探討其位移與頻率隨紫外光(365 nm, 0.7 mW/cm^2 )照射而上升及偏移數十赫茲之機制。此外,發展光壓電感測器P(VDF-TrFE)/ TiOPc,提出摻入TiOPc濃度為10%重量百分濃度,可使材料具有最佳光調變壓電的表現。並且於第五章,複合壓電PZT與40% w.t. TiOPc/ 樹脂,研製量測誤差小於10%的光壓電彎曲感測器,並驗證此感測器具有快速動態調變、反應效率佳、不影響待測物振動行為等優點,因此更能夠改善傳統力學感測器因佈點位置差異造成的誤差。本論文透過探討壓電片於流體中的效率、研製並了解光壓電致動器與感測器的表現,所取得的模擬、實驗及分析結果,將能作為未來創新光壓電或光壓電流體應用之參考。

The micro-/ nano mechanical manipulation has been recently progressively developed for micromechanical equipment, biochips, and microfluidic devices. Since the end of the 19th century, the atomic force microscopy, optical tweezers, and magnetic tweezers have been proposed to control single cell or atom. Some indirect control methods, such as optothermal mechanism, opto-electrowetting (OEW) and optical dielectrophoresis (ODEP) techniques, provide us with larger force, better efficiency, and less damage on the objects. In these years, many optical sensitive composite materials are integrated into control systems; the electrical or thermal field can be modulated by light pattern for manipulating particles or droplets. However, these conventional optical control techniques deliver actuating or sensing force only in the nN range. In this dissertation, the optopiezoelectric actuator or sensor can modulate mN force by varying the distribution of the illuminated light pattern. In Chapter 3, a PZT actuator is triggered with 175 DC voltage in microfluidic device to efficiently trap living C. elegans. In Chapter 4, the optopiezoelectric cantilever beam actuator of spiropyran/ liquid crystal- PZT performs UV (365 nm, 0.7 mW/cm^2) modulated amplitude with few tens (Hz) frequency shift. And the P(VDF-TrFE)/ TiOPc optopiezoelectric sensors are fabricated and developed with an optimal 10 % w.t. TiOPc concentration. In traditional point bending sensor, the signal error is closely related to its position. Thus in Chapter 5, a full field optopiezoelectric bending sensor, PZT- 40% w.t. TiOPc/ resin, performs less than 10% error with numerical analysis. Without effects on the host structure, it has fast and easy modulation capability by using spatially distributed light illumination patterns. Overall, this thesis discusses the piezoelectric effect in microfluidics, developing and understanding the optopiezoelectric performance. We expect the simulation, experimental and analytical results can provide some evidences and references for future innovative optopiezoelectric or optopiezoelectric fluidics application.

口試委員會審定書 #
誌謝 i
中文摘要 ii
Abstract iv
Contents vi
List of figures ix
List of tables xvi
Chapter 1 Introduction ........................................................................... 1
1.1 Micro-/ nano mechanical manipulation ……………………………... 1
1.2 Optical manipulation for small objects ………………………….…… 3
1.3 Piezoelectric manipulation and control system ………....…….........11
1.4 Optopiezoelectric control system ……………………………….........15
1.5 Motivation and purpose …………………………………………..........17
Chapter 2 Material …………………………………………………...…..........19
2.1 Piezoelectric material ……………………………………………..........19
2.1.1 Lead Zirconium Titanate (PZT) ……………………………….....19
2.1.2 Piezoelectric polymer ………………………………………….....20
2.2 Photoconductive material ……………………………………………....24
2.2.1 Spiropyran ………………………………………………...............24
2.2.2 Titanyl Phthalocyanine (TiOPc) ..……………………………......26
Chapter 3 A living worm trapper by PZT actuator …………………..........28
3.1 Introduction ……………………………………………………..............28
3.2 Theory ……………………………………………………………….........31
3.2.1 A linear piezoelectric thin plate actuator ………………..….....31
3.2.2 Laplace pressure …………………………………………...........39
3.3 Simulation ……………………………………………………….............40
3.4 Device fabrication …………………………………………………........50
3.5 Experimental results ……………………………………………...........51
3.6 Discussion and future work ……………………………………..........54
Chapter 4 Optopiezoelectric material ………………………………..........55
4.1 Optopiezoelectric actuator ……………………………………...........56
4.1.1 Experimental setup ………………………………….................56
4.1.2 Results ………………………………………………...................60
4.1.3 Discussion …………………………………………....................63
4.2 Optopiezoelectric sensor ………………………………………..........65
4.2.1 Material and film preparation ………………………................66
4.2.2 Characterization methods ………………………………..........67
4.2.3 Physical properties …………………………………...…..........68
4.2.4 Sensing performance ………………………………….............79
4.2.5 Discussion ………………………………………………….........82
Chapter 5 Optopiezoelectric bending sensor ………………….......83
5.1 Device fabrication and experimental setup ……………….............83
5.2 Experimental results ………………………………………….............86
5.2.1 Material characteristics ……………………………………......86
5.2.2 Bending sensor ……………………………………………........87
5.3 Numerical calculation and curve fitting ………………………….....90
5.4 Discussion ………………………………………………………….......93
Chapter 6 Conclusion and future work …………………………………...95
6.1 Conclusion ……………………………………………………….........95
6.2 Future work …………………………………………………………....96
Reference ………………………………………………………………….....98
List of publications …………………………………………………………107


[1]K. Ariga, T. Mori and J. P. Hill, “Mechanical control of nanomaterials and nanosystems,” Advanced Materials 24, 158-176 (2012).
[2]K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nature Methods 5, 491-505 (2008).
[3]D. Dulin, J. Lipfert, M. C. Moolman et al., “Studying genomic processes at the single-molecule level: introducing the tools and applications,” Nature Reviews | Genetics 14, 9-22 (2013).
[4]S. Vahabi, B. N. Salman and A. Javanmard “Atomic Force Microscopy Application in Biological Research: A Review Study,” Iranian Journal of Medical Sciences 38, 76-83 (2013).
[5]D. J. Muller and Y. F. Dufrene, “Atomic force microscopy: a nanoscopic window on the cell surface,” Trends in Cell Biology 21, 461-469 (2011).
[6]F. Rico, A. Rigato, L. Picas et al., “Mechanics of proteins with a focus on atomic force microscopy,” Journal of Nanobiotechnology 11, Suppl 1: S3-1-12 (2013).
[7]T. Ando, T. Uchihashi and N. Kodera, “High-Speed AFM and Applications to Biomolecular Systems,” Annual Review of Biophysics 42, 393-414 (2013).
[8]A. Alessandrini and P. Facci, “AFM: a versatile tool in biophysics,” Measurement Science And Technology 16, R65-R92 (2005).
[9]C. Bustamante, S. B. Smith, J. Liphardt et al., “Single-molecule studies of DNA mechanics,” Current Opinion in Structural Biology 10, 279-285 (2000).
[10]F. Etoc, D. Lisse, Y. Bellaiche et al., “ Subcellular control of Rac-GTPase signalling by magnetogenetic manipulation inside living cells,” Nature Nanotechnology 8, 193-198 (2013).
[11]Y. Seol and K. C. Neuman, “Magnetic tweezers for single-molecule manipulation,” Methods in Molecular Biology 783, 265-293 (2011).
[12]J. Lipfert, J. W. J. Kerssemakers, T. Jager et al., “Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments,” Nature Methods 7, 977-980 (2010).
[13]T. R. Strick, J. F. Allemand, D. Bensimon et al., “The elasticity of a single supercoiled DNA molecule,” Science 271, 1835-1837 (1996).
[14]X. Li, C. C. Cheah, S. Hu et al., “Dynamic trapping and manipulation of biological cells with optical tweezers,” Automatica 49, 1614-1625 (2013).
[15]T. Asahi, T. Sugiyama and H. Masuhara, “Laser fabrication and spectroscopy of organic nanoparticles,” Accounts of Chemical Research 41, 1790-1798 (2008).
[16]H. Misawa, M. Koshioka, K. Sasaki et al., “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” Journal of Applied Physics 70, 3829-3836 (1991).
[17]M. Geiselmann, M. L. Juan, J. Renger et al., “Three-dimensional optical manipulation of a single electron spin,” Nature Nanotechnology 8, 175-179 (2013).
[18]G. K. Kurup and A. S. Basu, “Optofluidic tweezers: manipulation of oil droplets with 105 greater force than optical tweezers,” in International Conference on Miniaturized Systems for Chemistry and Life Sciences, (μTAS, Seattle, USA, 2011), pp. 263-265.
[19]V. Pratap, N. Moumen and S. Subramanian, “Thermocapillary Motion of a Liquid Drop on a Horizontal Solid Surface,” Langmuir 24, 5185-5193 (2008).
[20]K. D. Barton and S. Subramanian, “The Migration of Liquid Drops in a Vertical Temperature Gradient,” Journal of Colloid and Interface Science 133, 211-222 (1989).
[21]H. Kasumi, Y. E. Solomentsev, S. A. Guelcher et al., “Thermocapillary Flow and Aggregation of Bubbles on a Solid Wall,” Journal of Colloid and Interface Science 232, 111-120 (2000).
[22]P. Y. Chiou, T. H. Wu, S. Park et al., “Pulse Laser Driven Ultrafast Micro and Nanofluidic System,” Proceeding of SPIE 7759, 77590Z-1-8 (2010).
[23]T. H. Wu, Y. Chen, S. Y. park et al., “Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter,” Lab on a Chip 12, 1378-1383 (2012).
[24]Y. Xie, C. Zhao, Y. Zhao et al., “Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles,” Lab on a Chip 13,1772-1779 (2013).
[25]S. Y. Park, T. H. Wu, Y. Chen et al., “High-speed droplet generation on demand driven by pulse laser-induced cavitation,” Lab on a Chip 11, 1010-1012 (2011).
[26]A. Q. Jian, K. Zhang, Y. Wang et al., “Microfluidic flow direction control using continuous-wave laser,” Sensors and Actuators A 188, 329– 334 (2012).
[27]P. Y. Chiou, A. T. Ohta and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370-372 (2005).
[28]P. Y. Chiou, H. Moon, H. Toshiyoshi et al., “Light actuation of liquid by optoelectrowetting,” Sensors and Actuators A: Physical 104, 222-228 (2003).
[29]P. Y. Chiou, Z. Chang and M. C. Wu, “Droplet Manipulation With Light on Optoelectrowetting Device,” Journal of Microelectromechanical Systems 17, 133-138 (2003).
[30]T. M. Yu, S. M. Yang, C. Y. Fu et al., “Integration of organic opto-electrowetting and poly(ethylene) glycol diacrylate (PEGDA) microfluidics for droplets manipulation,” Sensors and Actuators B 180, 35-42 (2013).
[31]F. Krogmann, H. Qu, W. Monch et al., “Push/pull actuation using opto electrowetting,” Sensors and Actuators A 141, 499-505 (2008).
[32]N. Inui, “Relationship between contact angle of liquid droplet and light beam position in optoelectrowetting,” Sensors and Actuators A 140, 123-130 (2007).
[33]M. Vallet, B. Berge and L. Vovelle, “Electrowetting of water and aqueous solutions on poly (ethylene terephthalate) insulating films,” Polymer 37, 2465-2470 (1996).
[34]H. S. Chuang, A. Kumar and S. Wereley, “Open optoelectrowetting droplet actuation,” Applied Physics Letters 93, 064104-1-3 (2008).
[35]S. Y. Park, M. A. Teitell and E. P. Y. Chiou, “Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns,” Lab on a Chip 10, 1655-1661 (2010).
[36]Y. H. Lin, Y. W. Yang and M. H. Wu, “The assembly of cell-encapsulated microparticles in a microfluidic system using optically induced dielectrophoretic (ODEP) force for structurally-controllable cartilage tissue engineering,” in International Symposium on Microchemistry and Microsystems, (Seoul, Korea, 2011).
[37]S. B. Huang, J. Chen, J. Wang et al., “A New Optically-Induced Dielectrophoretic (ODEP) Force-Based Scheme for Effective Cell Sorting,” International Journal of Electrochemical Science 7, 12656-12667 (2012).
[38]S. M. Yang, S. Y. Tseng, H. P. Chen et al., “Cell patterning via diffraction-induced optoelectronic dielectrophoresis force on an organic photoconductive chip,” Lab on a Chip 13, 3893-3902 (2013).
[39]C. H. Wang, Y. H. Lee, H. T. Kuo et al., “Dielectrophoretically-assisted electroporation using light-activated virtual microelectrodes for multiple DNA transfection,” Lab on a Chip 14, 592-601 (2014).
[40]S. B. Huang, S. L. Liu, J. T. Li et al., “Label-free Live and Dead Cell Separation Method Using a High-Efficiency Optically-Induced Dielectrophoretic (ODEP) Force-based Microfluidic Platform,” International Journal of Automation and Smart Technology 4, 83-91 (2014).
[41]J. K. Valley, S. N. Pei, A. Jamshidi et al., “A unified platform for optoelectrowetting and optoelectronic tweezers,” Lab on a Chip 11, 1292-1297 (2011).
[42]P. H. Cazorla, O. Fuchs, M. Cochet et al., “Piezoelectric micro-pump with PZT thin film for low consumption microfluidic devices,” Procedia Engineering 87, 488-491 (2014).
[43]A. Bransky, N. Korin, M. Khoury et al., “A microfluidic droplet generator based on a piezoelectric actuator,” Lab on a Chip 9, 516-520 (2009).
[44]W. Zhang and Richard E. Eitel, “An integrated multilayer ceramic piezoelectric micropump for microfluidic systems,” Journal of Intelligent Material Systems and Structures 24, 1637-1646 (2013).
[45]Y. B. Ham, W. S. Seo, S. J. Oh et al., “Development of a Piezoelectric Pump for a Highly-precise Constant Flow Rate,” Journal of the Korean Physical Society 57, 873-876 (2010).
[46] E. Nakamachi, H. Hwang, N, Okamoto et al., “Development of a micropump for Bio-MEMS using a new biocompatible piezoelectric material MgSiO3,” Journal of Micro/Nanolithography, MEMS, and MOEMS 10, 033013-1-7 (2011).
[47]C. H. Chen, S. H. Cho, F. Tsai, et al., “Microfluidic cell sorter with integrated piezoelectric actuator,” Biomed Microdevices 11, 1223-1231 (2009).
[48]T. A. House, V. H. Lieu and D. T. Schwartz, “A model for inertial particle trapping locations in hydrodynamic tweezers arrays,” Journal of Micromechanics and Microengineering 24, 045019-1-8 (2014).
[49]R. H. W. Lam and W. J. Li, “A Digitally Controllable Polymer-Based Microfluidic Mixing Module Array,” Micromachines 3, 279-294 (2012).
[50]D. Ahmed, X. Mao, J. Shi et al., “A millisecond micromixer via single-bubble-based acoustic streaming,” Lab on a Chip 9, 2738-2741 (2009).
[51]J. Sirohi and I. Chopra, “Fundamental Understanding of Piezoelectric Strain Sensors,” Journal of Intelligent Material Systems and Structures 11, 246-257 (2000).
[52]K. Takashima, S. Horie, T. Mukai et al., “Piezoelectric properties of vinylidene fluoride oligomer for use in medical tactile sensor applications,” Sensors and Actuators A 144, 90-96 (2008).
[53]F. Li, W. Liu, C. Stefanini et al., “A Novel Bioinspired PVDF Micro/Nano Hair Receptor for a Robot Sensing System,” Sensors 10, 994-1011 (2010).
[54]J. S. Lee, K. Y. Shin, O. J. Cheong et al., “Highly Sensitive and Multifunctional Tactile Sensor Using Free-standing ZnO/ PVDF Thin Film with Graphene Electrodes for Pressure and Temperature Monitoring,” Scientific Reports 5, 7887-1-8 (2015).
[55]W. Park, J. H. Yang, C. G. Kang et al., “Characteristics of a pressure sensitive touch sensor using a piezoelectric PVDF-TrFE/MoS2 stack,” Nanotechnology 24, 475501-1-6 (2013).
[56]E. F. Crawley, “Intelligent Structures for Aerospace: A Technology Overview and Assessment,” AIAA Journal 32, 1689-1699 (1994).
[57]D. Sun, L. Tong, and S. N. Atluri, “Effects of piezoelectric sensor/actuator debonding on vibration control of smart beams,” International Journal of Solids and Structures 38, 9033-9051 (2001).
[58]H. S. Tzou, “Distributed sensing and controls of flexible plates and shells using distributed piezoelectric elements,” Journal of Wave-Material Interface 4, 11-29 (1989).
[59]J. Qiu and J. Tani, “Vibration control of a cylindrical shell using distributed piezoelectric sensors and actuators,” Journal of Intelligent Material System and Structures 6, 474-481 (1995).
[60]E. K. Dimitriadis and C. R. Fuller, “Active Control of Sound Transmission Through Elastic Plates Using Piezoelectric Actuators,” AIAA Journal 29, 1771-1777 (1991).
[61]M. S. Kozie’n and Jerzy Wiciak, “Reduction of Structural Noise Inside Crane Cage by Piezoelectric Actuators-FEM Simulation,” Archives of Acoustics 33, 643-652 (2008).
[62]F. dell’Isola, F. Vestroni and S. Vidoli, “Structural-Damage Detection by Distributed Piezoelectric Transducers and Tuned Electric Circuits,” Research in Nondestructive Evaluation 16, 101-117 (2010).
[63]D. F Wang, Y. Suzuki, Y. Suwa et al., “Integrated piezoelectric direct current sensor with actuating and sensing elements applicable to two-wire dc appliances,” Measurement Science and Technology 24, 125109-1-5 (2013).
[64]C. K. Lee, “Theory of lamiinated piezoelectric plates for the design of distributed sensors and actuators-part one,” The Journal of the Acoustical Society of America 87, 1144-1158 (1990).
[65]C. K. Lee and F. C. Moon, “Modal Sensors/Actuators,” Journal of Applied Mechanics 57, 434-441 (1990).
[66]C. K. Lee, W. W. Chiang and T. C. O''Sullivan, “Piezoelectric modal sensor/actuator pairs for critical active damping vibration control,” The Journal of the Acoustical Society of America 90, 374-384 (1991).
[67]A. Donoso and J. C. Bellido “Distributed piezoelectric modal sensors for circular plates,” Journal of Sound and Vibration 319, 50-57 (2009).
[68]Y. H. Hsu and C. K. Lee, “Miniature Free-fall Sensors,” Journal of Intelligent Material Systems and Structures 12, 223-228 (2001).
[69]Y. H. Hsu and C. K. Lee, “On the Autonomous Gain and Phase Tailoring Transfer Functions of Symmetrically Distributed Piezoelectric Sensors,” Journal of Vibration and Acoustics 126, 528-536 (2004).
[70]S. Oberti, A. Neild, R. Quach et al., “The use of acoustic radiation forces to position particles within fluid droplets,” Ultrasonics 49, 47-52 (2009).
[71]K. T. Chen, C. K. Chang, H. L. Kuo et al., “Optically Defined Modal Sensors Incorporating Spiropyran-Doped Liquid Crystals with Piezoelectric Sensors,” Sensors 11, 1810-1818 (2011).
[72]K. T. Chen, S. D. Huang, Y. H. Chien et al., “Development of an optically modulated piezoelectric sensor/actuator based on titanium oxide phthalocyanine thin film,” Smart Materials and Structures 21, 115025-1-8.
[73]黃旭鐸, “以TiOPc/ 壓電圓板設計可撓鏡的研發,”國立台灣大學工程科學及海洋工程研究所碩士論文, 2013.
[74]P. W. Wang, T. C. Chang and C. K. Lee, “Acoustic Research and Control of Piezoelectric Speakers Using A Spatially Modulated TiOPc/Piezo Buzzer Actuator,” in International Symposium on Optomechatronic Technologies, (Seattle, USA, 2014).
[75]H. Li, Z. D. Deng, Y. Yuan et al., “Design Parameters of a Miniaturized Piezoelectric Underwater Acoustic Transmitter,” Sensors 12, 9098-9109 (2012).
[76]C. C. Chang and T. E. Hsu, “The Study of Micro-bridge Structure PZT Underwater Ultrasonic Sensors with Al Sacrificial Layer,” Oceans, (Taipei, Taiwan, 2014).
[77]L. Su, L. Zou, C. C. Fong et al., “Detection of cancer biomarkers by piezoelectric biosensor using PZT ceramic resonator as the transducer,” Biosensors and Bioelectronics 46, 155-161(2013).
[78]I. H. Hwang and J. H. Lee, “Self-actuating biosensor using a piezoelectric cantilever and its optimization,” Journal of Physics: Conference Series 34, 362-367 (2006).
[79]C. Dagdeviren, B. D. Yang, Y. Su et al., “Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm,” Proceedings of the National Academy of Sciences of the United States of America 111, 1927-1932 (2014).
[80]S. C. Lin, B. S. Lee, W. J. Wu et al., “Multi-cantilever piezoelectric MEMS generator in energy harvesting,” IEEE International Ultrasonics Symposium Proceedings, 755-758 (2009).
[81]Measurement Specialties, Inc., “Piezo Film Sensors Technical Manual,” (1999).
[82]M. Nasir, H. Matsumoto, M. Minagawa et al., “Preparation of PVDF/PMMA Blend Nanofibers by Electrospray Deposition: Effects of Blending Ratio and Humidity,” The Society of Polymer Science 41, 402-406 (2009).
[83]C. Seoul, Y. T. Kim and C. K. Baek, “Electrospinning of Poly(vinylidenefluoride)/ Dimethylformamide Solutions with Carbon Nanotubes,” Journal of Polymer Science: Part B: Polymer Physics 41, 1572-1577 (2003).
[84]J. B. Lando, H. G. Olf and H. G. Peterlin, “Nuclear magnetic resonance and x-ray determination of the structure of poly(vinylidene fluoride),” Journal of Polymer Science Part A-1: Polymer Chemistry 4, 941-951 (1966).
[85]R. Hasegawa, Y. Takahashi, Y. Chatani et al., “Crystal Structures of Three Crystalline Forms of Poly(vinylidene fluoride),” Polymer Journal 3, 600-610 (1972).
[86]B. P. Neese “Investigations of Structure-Property Relationships to Enhance the Multifunctional Properties of PVDF-Based Polymers,” The Pennsylvania State University, Department of Materials Science and Engineering, Doctor of Philosophy, 2009.
[87]E. D. Weil, Phosphorus- Containing Polymers and Oligomers- Encyclopedia of Polymer Science and Technology. (J. Wiley & Sons, Inc.; New York, 2006).
[88]C. A. Nguyen, P. S. Lee, W. A. Yee et al., “Enhanced functional and structural characteristics of poly(vinylidene-trifluoroethylene) copolymer thin films by corona poling,” Journal of The Electrochemical Society 154, G224-G228 (2007).
[89]Z. G. Zeng, G. D. Zhu, L. Zhang et al., “Effect of crystallinity on polarization fatigue of ferroelectric P(VDF-TrFE) copolymer films,” Chinese Journal of Polymer Science 27, 479-485 (2009).
[90]T. Furukawa, M. Date, E. Fukada et al., “Ferroelectric behavior in the copolymer of vinylidenefluoride and trifluoroethylene,” Japanese Journal of Applied Physics 19, L109-L112 (1980).
[91]Z. Chen, K. Y. Kwon and X. Tan, “Integrated IPMC/PVDF sensory actuator and its validation in feedback control,” Sensors and Actuators A: Physical 144, 231-241 (2008).
[92]B. Ploss, W. Y. Ng, H. L. W. Chan et al., “Poling study of PZT/ P(VDF-TrFE) composites,” Composites Science and Technology 61, 957-962 (2001).
[93]E. Mele, D. Pisignano, M. Varda et al., “Smart photochromic gratings with switchable wettability realized by green-light interferometry,” Applied Physics Letters 88, 203124-1-3 (2006).
[94]A. Athanassiou, M. Lygeraki, D. Pisignano et al., “Photocontrolled variations in the wetting capability of photochromic polymers enhanced by surface nanostructuring,” Langmuir 22, 2329-2333 (2006).
[95]H. B. Laurent and H. Durr, “Organic photochromism,” Pure and Applied Chemistry 73, 639-665 (2001).
[96]R. Byrne and D. Diamond, “Chemo/bio-sensor networks,” Nature Materials 5, 421-424 (2006).
[97]Q. Shen, Y. Cao, S. Liu et al., “Conformation-induced electrostatic gating of the conduction of spiropyran-coated organic thin-film transistors,” The Journal of Physical Chemistry C 113, 10807-10812 (2009).
[98]Z. Walsh, S. Scarmagnani, F. B. Lopez et al., “Photochromic spiropyran monolithic polymers: Molecular photo-controllable electroosmotic pumps for micro-fluidic devices,” Sensors and Actuators B 148, 569–576 (2010).
[99]X. Zhang, Q. Zhou, H. Liu et al., “UV light induced plasticization and light activated shape memory of spiropyran doped ethylene-vinyl acetate copolymers,” Soft Matter 10, 3748-3754 (2014).
[100]F. B. Lopez, S. Scarmagnani, Z. Walsh et al., “Spiropyran modified micro-fluidic chip channels as photonically controlled self-indicating system for metal ion accumulation and release,” Sensors & Actuators: B. Chemical 140, 295-303 (2009).
[101]M. Mayukh, “Near-IR Absorbing Phthalocyanine Derivatives As Materials For Organic Solar Cells,” The University of Arizona, Department of Chemistry and Biochemistry, Doctor of Philosophy (2011).
[102]L. Li, Q. Tang, H. Li et al., “An Ultra Closely π-Stacked Organic Semiconductor for High Performance Field-Effect Transistors,” Advanced Materials 19, 2613–2617 (2007).
[103]W. Chao. X. Zhang, C. Xiao et al., “An excellent single-layered photoreceptor composed of oxotitanium phthalocyanine nanoparticles and an insulating resin,” Journal of Colloid and Interface Science 325, 198-202 (2008).
[104]K. Y. Law, “Organic photoconductive materials: recent trends and developments,” Chemical Reviews 93, 449-486 (1993).
[105]C. J. Lee, J. H. Park and J. Park, “Synthesis of bamboo-shaped MWCNT using thermal CVD,” Chemical Physics Letters 323, 560-565 (2000).
[106]K. Ogawa, J. Yao, H. Yonehara et al., “Chemical behaviour of oxotitanium(IV) phthalocyanine (OTiPc) solutions associated with the preparation of OTiPC monolayers and multilayers,” Journal of Materials Chemistry 6, 143-147 (1996).
[107]S. M. Yang, T. M. Yu, H. P. Huang et al., “Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis,” Optics Letters 35, 1959-1961 (2010).
[108]S. M. Yang, T. M. Yu, M. H. Liu et al., “Moldless PEGDA Based Optoelectrofluidic Platformfor Microparticle Selection, Advances in OptoElectronics 2011, 1-8 (2011).
[109]S. M. Yang, T. M. Yu, H. P. Huang et al., “Dynamic Pico-Liter Bubble Manipulation via Tiopc-Based Light-Induced Dielectrophoresis,” in 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, (Groningen, The Netherlands, 2010).
[110]L. Heng, D. Tian, L. Chen et al., “Local photoelectric conversion properties of titanyl-phthalocyanine (TiOPc) coated aligned ZnO nanorods,” Chemical Communications 46, 1162-1164 (2010).
[111]M. G. Walter, A. B. Rudine and C. C. Wamser, “Porphyrins and phthalocyanines in solar photovoltaic cells,” Journal of Porphyrins and Phthalocyanines 14, 759-792 (2010).
[112]K. Vasseur, B. P. Rand, D. Cheyns et al., “Correlating the Polymorphism of Titanyl Phthalocyanine Thin Films with Solar Cell Performance,” The Journal of Physical Chemistry Letters 3, 2395-2400 (2012).
[113]https://tuebingen.mpg.de/en/news-press/press-releases/detail/how-the-modular-structure-of-proteins-permits-evolution-to-move-forward.html.
[114]R. Kerr, V. Lev-Ram, G. Baird et al., “Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans,” Neuron 26, 583-594 (2000).
[115]M. B. Goodman, D. H. Hall, L. Avery et al., “Active currents regulate sensitivity and dynamic range in C. elegans neurons,” Neuron 20, 763-772 (1998).
[116]J. A. Lewis, C. H. Wu, H. Berg et al., “The Genetics of Levamisole Resistance in the Nematode CAENORHABDITIS ELEGANS,” Genetics 95, 905-928 (1980).
[117]K. Chung, M. Zhan, J. Srinivasan et al., “Microfluidic chamber arrays for whole-organism behavior-based chemical screening,” Lab on a Chip 11, 3689-3697 (2011).
[118]X. Ai, W. Zhuo, Q. Liang et al., “A high-throughput device for size based separation of C. elegans developmental stages,” Lab on a Chip 14, 1746-1752 (2014).
[119]K. Chung, M. M. Crane and H. Lu, “Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans,” Nature Methods 5, 637-643 (2008).
[120]C. L. Gilleland, C. B. Rohde, F. Zeng et al., “Microfluidic immobilization of physiologically active Caenorhabditis elegans,” Nature Protocols 5, 1888-1902 (2010).
[121]T. V. Chokshi, A. Ben-Yakar and N. Chronis, “CO2 and compressive immobilization of C. elegans on-chip,” Lab on a Chip 9, 151-157 (2009).
[122]S. E. Hulme, S. S. Shevkoplyas, J. Apfeld et al., “A microfabricated array of clamps for immobilizing and imaging C. elegans,” Lab on a Chip 7, 1515-1523 (2007).
[123]H. S. Chuang, D. M. Raizen, A. Lamb et al., “Dielectrophoresis of Caenorhabditis elegans,” Lab on a Chip 11, 599-604 (2011).
[124]X. Ding, S. C. S. Lin, B. Kiraly et al., “On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves,” Proceedings of the National Academy of Sciences of the United States of America (PNAS) 28, 11105-11109 (2012).
[125]A. H. Meitzler, H. F. Tiersten, A. W. Warner et al., “ANSI/IEEE Std 176-1987 IEEE Standard on Piezoelectricity.” (Piscataway, NJ: The Institute of Electrical and Electronics Engineers) (1987).
[126]N. N. Rogacheva, The theory of piezoelectric shells and plates. (CRC Press; England, 1994).
[127]J. Yang, The mechanics of piezoelectric structures. (World Scientific Publishing Co Pte Ltd; Singapore, 2006).
[128]D. A. Edwards, H. Brenner, and D. T. Wasan, Interfacial Transport Processes and Rheology. (Butterworth-Heinemann; Massachusetts, 1991).
[129]J. Sznitman, X. Shen, P. K. Purohit et al., “Swimming Behavior of the Nematode Caenorhabditis elegans: Bridging Small-Scale Locomotion with Biomechanics,” IFMBE Proceedings 31, 29-32 (2010).
[130]A. Vidal-Gadea, S. Topper, L. Young et al., “Caenorhabditis elegans selects distinct crawling and swimming gaits via dopamine and serotonin,” Proceedings of the National Academy of Sciences of the United States of America (PNAS) 108, 17504–17509 (2011).
[131]K. Uchino, “Introduction to Piezoelectric Actuators and Transducers.” (International Center for Actuators and Transducers, Penn State University) (2003).
[132]M. Deshpande, and L. Saggere, “An analytical model and working equations for static deflections of a circular multi-layered diaphragm-type piezoelectric actuator,” Sensors and Actuators A: Physical 136, 673-689 (2007).
[133]C. K. Lee, G. Y. Wu, Thomas C. T. et al., “A High Performance Doppler Interferometer for Advanced Optical Storage Systems,” Japanese Journal of Applied Physics 38, 1730-1741 (1999).
[134]W. J. Wu, C. K. Lee, and C. T. Hsieh, “On the Signal Processing Algorithms for Doppler Effect Based Nanometer Positioning Systems,” Japanese Journal of Applied Physics 38, 1725-1729 (1999).
[135]E. Samoylova, L. Ceseracciu, M. Allione et al., “Photoinduced variable stiffness of spiropyran-based composites,” Applied Physics Letters 99, 201905-1-3 (2011).
[136]L.O. Faria and R.L. Moreira, “Infrared spectroscopic investigation of chain conformations and interactions in P(VDF-TrFE)/PMMA blends,” Journal of Polymer Science Part B: Polymer Physics 38, 34-40 (2000).
[137]Z.Y. Wang, H.Q. Fan, K.H. Su et al., “Structure, phase transition and electric properties of poly(vinylidene fluoride-trifluoroethylene) copolymer studied with density functional theory,” Polymer 48, 3226-3236 (2007).
[138]H.J. Lee, W.S. Kim, S.H. Park et al., “Effects of nanocrystalline porous TiO2 films on interface adsorption of phthalocyanines and polymer electrolytes in dye-sensitized solar cells,” Macromolecular Symposia 235, 230-236 (2006).
[139]D. Dundar, H. Can, D. Atilla et al., “ Photoconductive novel mesomorphic oxotitanium phthalocyanines,” Polyhedron 27, 3383-3390 (2008).
[140]C. K. Lee, “Piezoelectric Laminates for Torsional and Bending Modal Control: Theory and Experiment,” Cornell University, Department of Theoretical and Applied Mechanics, Doctor of Philosophy, 1987.
[141]F. Lu, H. P. Lee and S. P. Lim, “Modeling and analysis of micro piezoelectric power generators for micro- electromechanical-systems applications,” Smart Materials and Structures 13, 57-63 (2004).
[142]A. T. Mineto, M. P. de S. Braun, H. A. Navarro et al., “Modeling of a One-dimensional cantilever plate for Piezoelectric Energy Harvesting,” Proceedings of the 9th Brazilian Conference on Dynamics Control and their Applications, 599-605 (2010).
[143]S. Yang and B. Ngoi, “General sensor equation and actuator equation for the theory of laminated piezoelectric plates,” Smart Materials and Structures 8, 411-415 (1999).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top