跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/27 00:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡明智
研究生(外文):Ming-Jhih Cai
論文名稱:二級處理廢水之出流水有機物對臭氧處理程序去除新興污染物之影響
論文名稱(外文):Effects of Effluent Organic Matter (EfOM) in Secondary Effluent on the Removal of Emerging Contaminants by Ozonation
指導教授:林逸彬
指導教授(外文):Yi-Pin Lin
口試委員:闕蓓德童心欣
口試委員(外文):Pei-Te ChiuehHsin-Hsin Tung
口試日期:2014-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:47
中文關鍵詞:新興污染物二級放流水出流水有機物臭氧處理程序氫氧機自由基鏈狀反應Rct概念
外文關鍵詞:emerging contaminantsozonationsecondary effluenteffluent organic matterhydroxyl radical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
廢水中新興污染物的去除對於環境健康已經成為重要的議題。臭氧處理程序是一個可行的技術,但廢水的特性會影響臭氧的處理效率,而這部分的影響尚未被闡明。二級放流水含有出流有機物(effluent organic matter, EfOM),這些有機物質可以直接與臭氧反應,亦可以在臭氧降解過程中的氫氧自由基鏈狀反應裡扮演起始劑(initiator)、促進劑(promoter)以及抑制劑(inhibitor)的角色。這四種不同的反應機制會影響臭氧的降解、氫氧自由基的形成及消耗以及新興污染物的去除。本研究的目的為:(1)利用氫氧自由基的瞬時穩定態模式、Rct概念以及臭氧的擬一階速率模式測定出流水有機物於臭氧直接反應、起始反應(initiation)、促進反應(promotion)以及抑制反應(inhibition)的速率常數。(2)測定pH值及溫度對出流水有機物的四個速率常數之影響。(3)測定及模擬出流水有機物對於選定的新興污染物去除之影響。本研究所使用的二級放流水取自迪化及內湖污水處理場,並測定其出流水有機物之速率常數。結果顯示直接反應及起始反應(都源自出流水有機物與臭氧之反應)的速率常數會隨著pH值的升高而增加,然而在促進反應及抑制反應(都源自出流水有機物與氫氧自由基反應)的速率常數則沒有顯著的變化。在溫度影響方面,所有的速率常數皆隨著溫度的升高而增加。在稀釋的內湖二級處理出流水中, ibuprofen、acetylsulfamethoxazole以及metoprolol的去除皆可利用測定的出流水有機物速率常數加以模擬而得到良好的去除效率預測。

Removal of emerging contaminants such as pharmaceutical compounds in wastewater treatment is essential to ensure the ecological health of the receiving water bodies. Ozonation is a promising technology to achieve this purpose but important wastewater characteristics affecting the optimal removal efficiency has not been fully elucidated. The secondary effluent contains effluent organic matter (EfOM), which can react directly with ozone as well as react as the initiator, promoter and inhibitor in the hydroxyl radical (·OH) chain reactions resulting from ozone decomposition. These different reaction modes of EfOM collectively determine the ozone and ·OH exposures and the degradation of pharmaceutical compounds. The objectives of this study were (1) to determine the rate constants of EfOM in terms of direct ozone reaction, initiation, promotion and inhibition reactions using a new experimental procedures that integrate the transient steady-state ·OH model, the Rct concept and the pseudo first-order ozone decomposition model, (2) to investigate the influences of pH value and temperature on these rate constants, and (3) to determine and model the effects of EfOM on the removal of selected model pharmaceutical compounds. The rate constants of EfOM in secondary effluents collected from Neihu and Dihua wastewater treatment plants were determined in this study. It was found that the rate constants of direct reaction and initiation (both resulting from the reaction with ozone) generally increase with the increasing pH value while the rate constants of promotion and inhibition (both resulting from the reaction with ·OH) do not vary significantly. All rate constants increase with the increasing temperature. The removal of ibuprofen, acetylsulfamethoxazole and metoprolol in diluted Neihu secondary effluent using ozonation can be fairly-well modeled by using the determined rate constants of EfOM.

摘要....................................................I
Abstract...............................................II
Contents...............................................IV
Figures...............................................VII
Tables.................................................IX
Abbreviations...........................................X
Chapter 1 Introduction..................................1
1.1 Background..........................................1
2.1 Objectives..........................................3
Chapter 2 Literature review.............................4
2.1 Ozonation of organic compounds......................4
2.2 The Rct model.......................................7
2.2.1 The original Rct concept..........................7
2.2.2 The modified Rct model and application............9
2.3 Ozonation of micropollutants.......................12
Chapter 3 Materials and methods........................14
3.1 Reagents and chemicals.............................14
3.2 Stock solutions....................................14
3.2.1 Ozone, indigo, phosphate buffer and sodium thiosulfate stock solutions............................15
3.2.2 pCBA, ibuprofen, metoprolol and acetylsulfamethoxazole stock solutions.................15
3.3 Secondary effluents................................16
3.4 Determination of the rate constants of EfOM........16
3.5 Determination of the influences of EfOM on the degradation of ibuprofen, metoprolol and acetylsulfamethoxazole by ozonation....................17
3.6 Analytical methods.................................18
Chapter 4 Results and discussion.......................21
4.1 Rate constants of EfOM in secondary effluents......21
4.2 Effects of pH on EfOM rate constants...............26
4.3 Effects of temperature on EfOM rate constants......28
4.4 Effects of EfOM on the removal of pharmaceuticals..32
Chapter 5 Conclusions and recommendations..............37
5.1 Conclusions........................................37
5.2 Recommendations for future studies.................38
References.............................................39
Appendix A.............................................45
Appendix B.............................................47


APHA; WWA; WDF, Standard methods for the examination of water and wastewater, 21 st Ed. In APHP: Washington, DC, 2012.
Audenaert, W.T.M., Vandierendonck, D., Van Hulle, S.W.H., Nopens, I., 2013. Comparison of ozone and HO· induced conversion of effluent organic matter (EfOM) using ozonation and UV/H2O2 treatment. Water Research 47, 2387-2398.
Bahr, C., Schumacher, J., Ernst, M., Luck, F., Heinzmann, B., Jekel, M., 2007. SUVA as control parameter for the effective ozonation of organic pollutants in secondary effluent. Water science and Technology 55, 267-274.
Benitez, F.J., Acero, J.L., Real, F.J., Roldan, G., 2009. Ozonation of pharmaceuticals compounds: Rate constants and elimination in various water matrices. Chemosphere 77, 53-59.
Buffle, M.O., von Gunten, U., 2006. Phenols and amine induced ·OH generation during the initial phase of natural water ozonation. Environmental Science and Technology 40, 3057-3063.
Buhler, R.E., Staehlin, J., Hoigne, J., 1984. Ozone decomposition in water studied by pulse radiolysis. 1. Perhydroxyl (HO2)/hyperoxide (O2-) and HO3/O3- as intermediates. Journal of Physical Chemistry 88, 2560-2564.
Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B., 1988. Critical review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (·OH/·O-) in aqueous solution. Journal of Physical and Chemical Reference Data 17, 513-886.
Carbajo, J.B., Perdigon-Melon, J.A., Petre, A.L., Rosal, R., Leton, P., Garcia-Calvo, E., 2015. Personal care product preservatives: Risk assessment and mixture toxicities with an industrial wastewater. Water Research 72, 174-185.
Chapman, J.S., 2003. Biocide resistance mechanisms. International Biodeterioration and Biodegradation 51, 133-138.
Dodd, M.C., Buffle, M.O., von Gunten, U., 2006. Oxidation of antibacterial molecules by aqueous ozone: Moiety-specific reaction kinetics and application to ozone-based wastewater treatment. Environmental Science and Technology 40, 1969-1977.
Elovitz, M.S., von Gunten, U., 1999. Hydroxyl radical/ozone ratios during ozonation process I. The Rct concept. Ozone: Science and Engineering 21, 239-260.
Elovitz, M.S., von Gunten, U., Kaiser, H.P., 2000. Hydroxyl radical/ozone ratios during ozonation processes. II. The effect of temperature, pH, alkalinity, and DOM properties. Ozone: Science and Engineering 22, 123-150.
Geering, F., 1999. Ozone applications - the state-of-the-art in Switzerland. Ozone: Science and Engineering 21, 187-200.
Haag, W.R., Yao, C.C.D., 1992. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environmental Science and Technology 26, 1005-1013.
Halling-Sorensen, B., Nielson, S.N., Lanzky, P.F., Ingerslev, F., Holten Lutzhoft, H.C., Jorgensen, S.E., 1998. Occurrence, fate and effects of pharmaceutical substances in the environment- A review. Chemosphere 36, 357-393.
Hoigne, J., Bader, H., 1979. Ozonation of water: Selectivity and rate of oxidation of solutes. Ozone: Science and Engineering 1, 73-85.
Huber, M.M., Canonica, S., Park, G.Y., von Gunten, U., 2003. Oxidation of pharmaceuticals during ozonation and advanced oxidation process. Environmental Science and Technology 37, 1016-1024.
Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B., Buxton, H.T., 2002. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environmental Science and Technology 36, 1202-1211.
Lee, Y., Gerrity, D., Lee, M., Bogeat, A.E., Salhi, E., Gamage, S., Trenholm, R.A., Wert, E.C., Snyder, S.A., von Gunten, U., 2013. Prediction of micropollutant elimination during ozonation of municipal wastewater effluents: use of kinetic and water specific information. Environmental Science and Technology 47, 5872-5881.
Lee, Y., Kovalova, L., Mcardell, C.S., von Gunten, U., 2014. Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent. Water Research 64, 134-148.
Neta, P., Dorfman, L.M., 1968. Pulse radiolysis studies. XIII: rate constants for the reaction of hydroxyl radicals with aromatic compounds in aqueous solutions. Advances in Chemistry 81, 222-230.
Nothe, T., Fajlenkamp, H., von Sonntag, C., 2009. Ozonation of wastewater: rate of ozone consumption and hydroxyl radical yield. Environmental Science and Technology 43, 5990-5995.
Owen, S.F., Giltrow, E., Huggett, D.B., Hutchinson, T.H., Saye, J., Winter, M.J., Sumpter, J.P., 2007. Comparative physiology, pharmacology and toxicology of β-blocker: Mammals versus fish. Aquatic Toxicology 82, 145-162.
Roberts, P.H., Thomas, K.V., 2006. The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Science of the Total Environment 356, 143-153.
Robson, C.M., Rice, R.G., 1991. Wastewater ozonation in the U.S.A. – History and Current Status – 1989. Ozone: Science and Engineering 13, 23-40.
Richardson, S.D., 2007. Water analysis: emerging contaminants and current issues. Analytical Chemistry 79, 4295-4324.
Shon, H.K., Vigneswaran, S., Snyder, S.A., 2006. Effluent organic matter (EfOM) in wastewater: constituents, effects and treatment. Critical Reviews in Environmental Science and Technology 36, 327-374.
Snyder, S.A., Wert, E.C., Rexing, D.J., Zegers, R.E., Drury, D.D., 2006. Ozone oxidation of endocrine disruptors and pharmaceuticals in surface water and wastewater. Ozone: Science and Engineering 28, 445-460.
Song, W., Cooper, W.J., Mezyk, S.P., Greaves, J., Peake, B.M., 2008. Free radical destruction of beta-blockers in aqueous solution. Environmental Science and Technology 42, 1256-1261.
Staehelin, J., Buhler, R.E., Hoigne, J., 1984. Ozone decomposition in water studied by pulse radiolysis. 2. OH and HO4 as chain intermediates. The Journal of Physical Chemistry 88, 5999-6004.
Staehelin, J., Hoigne J., 1985. Decomposition of ozone in water in the presence of organic solutes action as promoters and inhibitors of radical chain reactions. Environmental Science and Technology 19, 1206-1213.
Stein, K., Ramil, M., Fink, G., Sander, M., Ternes, T.A., 2008. Analysis and sorption of psychoactive drugs onto sediment. Environmental Science and Technology 42, 6415-6423.
Ternes, T.A., Meisenheimer, M., McDowell, D., Sacher, F., Brauch, H.-J., Haist-Gukde, B., Preuss, G., Wilme, U., Zulei-Seibert, N., 2002. Removal of pharmaceuticals during drinking water treatment. Environmental Science and Technology 36, 3855-3863.
Weissbrodt, D., Kovalova, L., Ort, C., Pazhepurackel, V., Moser, R., Hollender, J., Siegrist, H., Mcardell, C., 2009. Mass flows of x-ray contrast media and cytostatics in hospital wastewater. Environmental Science and Technology 43, 4810-4817.
Willson, R.L., 1971. Pulse radiolysis studies on reaction of triacetoneamine-n-oxyl with radiation-induced free radicals. Transactions of the Faraday Society 67, 3008-3019.
Yao, C.C.D., Haag, W.R., 1991. Rate constants for direct reactions of ozone with several drinking water contaminants. Water Research 25, 761-773.
Yong, E.L., Lin, Y.P., 2012. Incorporation of initiation, promotion and inhibition in the Rct concept and its application in determining the initiation and inhibition capacities of natural water in ozonation. Water Research 46, 1990-1998.
Yong, E.L., Lin, Y.P., 2013. Kinetics of natural organic matter as the initiator, promoter, and inhibitor, and their influences on the removal of ibuprofen in ozonation. Ozone: Science and Engineering 35, 472-481.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top