跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 04:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳麒百
研究生(外文):Chi-Pai Chen
論文名稱:以水熱法進行不同性質生質物液化轉製液體燃料之研究
論文名稱(外文):Conversion of Biomass to Manufacture Liquid Bio-fuel via Hydrothermal Liquefaction
指導教授:張慶源張慶源引用關係
指導教授(外文):Ching-Yuan Chang
口試委員:李公哲章裕民
口試委員(外文):Kung-Cheh LiYu-Min Chang
口試日期:2015-06-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:174
中文關鍵詞:竹筷藻類水熱生物油液態燃料
外文關鍵詞:Hydrothermal liquefaction (HTL)bamboo chopsticksalgae powderbiomassbiofuelliquid fuel
相關次數:
  • 被引用被引用:1
  • 點閱點閱:376
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了達到永續發展的目的,永續能源的開發為現今研究的熱門議題,其中生質能源的開發頗受外界矚目。在本研究當中是著重在於利用熱轉換方法當中的水熱法將生質物轉換成液態生質能源,然而影響水熱法的因素有很多種,包含了反應溫度、反應時間、加熱速率、原物料組成與原料粒徑、反應槽填充的氣體以及催化劑的使用和使用催化劑的種類。在這個研究當中是著重於反應溫度、反應時間、原物料組成以及催化劑的使用四個影響因素來進行反應變因的改變,並且探討實驗所產生的生物油產物(BO)、液體產物(WSO)、固體產物(SP)以及氣體產物和反應變因之間的關聯。
在各產物當中BO為本研究的目標產物。研究顯示以藻類為原料可以有較高的BO產率和較高的BO熱值,在不加入催化劑的情況下就可以有22.31 wt.%的產率和9,184.17 kcal kg-1的熱值,加入催化劑之後BO產率更可以增加到24.61 wt.%而熱值提高到9,328.32 kcal kg-1。用竹筷為原料得到的BO產率和熱值皆偏低,不加催化劑頂多只有3.83 wt.%的產率以及7,393.35 kcal kg-1的熱值,然而催化劑的加入對於結果影響很大,可以將BO產率提升到21.24 wt.%,熱值升高到8088.18 kcal kg-1。可見催化劑對於結果的影響和使用的原料有很大的關聯,而相較於催化劑和原料對於結果的影響,反應溫度以及反應時間影響實驗結果較小。
然而在模擬蒸餾的結果表示,用藻類生產的BO其性質與我們日常所用的液態燃料(例如航空油、柴油、煤油)有比較大的差距,反而是用竹筷生產之BO性質與煤油和重油較為接近,而催化劑的加入更是可以使BO的性質與液態燃料更加接近。


Since the decrease of fossil fuel, the development of renewable energy is concerned around the world. In this research, we are going to talk about the method of transforming biomass into bioenergy. The way we use is hydrothermal liquefaction (HTL), one of thermochemical methods. And the impact factors of HTL include reaction time, reaction temperature, heating rate, type of materials, diameter of materials, initial gas in reactor and the type of catalysts. The products of HTL contain acetone soluble solids (BO), water soluble organics (WSO), solid product (SP) and gas product. In my experiments, I want to Fig. out how reaction time, reaction temperature, type of materials and type of catalysts affect the outcomes.
The most important product of HTL is BO. And the results of BO show that the used of algae powder (AP) will lead to higher yield of BO and higher BO heating value. Without the adding of catalyst, the yield of BO can be 22.31 wt.% and the BO heating value is 9184.17 kcal kg-1 high. After adding the catalyst, yield can even reach 24.61 wt.% and the heating value can become 9328.32 kcal kg-1. If replacing AP with bamboo chopsticks (BC), the yield of BO is only 3.83 wt.% low and the BO heating value is only 7393.35 kcal kg-1. However, the adding of catalyst can lead to a big change of BO yield and heating value of BC HTL results. The BO yield can reach 21.24 wt.% and BO heating value can become 8088.18 kcal kg-1 after catalyst being added.
Although the heating value of BO from AP is high, the simulated distillation (SDT) result shows that the property of it is not as good as BO from BC. SDT results indicate that the use of BC and adding of catalyst can improve the property of BO and make it more similar to the liquid fuels we used, like kerosene and heavy oil etc.


致謝 I
ABSTRACT III
目錄 V
圖目錄 VIII
表目錄 XI
符號說明 XIII
第一章 緒論 1
1.1 研究起源 1
1.2 研究內容 2
1.3 研究目標 3
第二章 文獻回顧 4
2.1 目標生質物 4
2.1.1 竹筷 4
2.1.2 藻類 4
2.2 航空燃油 5
2.3 生質能的產生 11
2.3.1 直接燃燒 11
2.3.2 物理轉換 11
2.3.3 生物轉換 11
2.3.4 化學轉換 11
2.3.5 熱轉換 12
2.4 生質物水熱法反應的因素 15
2.4.1 反應溫度 15
2.4.2 反應時間 16
2.4.3 加熱速率 19
2.4.4 原物料組成 19
2.4.5 原料粒徑 22
2.4.6 反應使用之溶劑 22
2.4.7 溶劑與原料比例 23
2.4.8 反應槽工作氣體 23
2.4.9 催化劑的添加 23
第三章 實驗設備與研究方法 29
3.1 實驗設定 30
3.2 實驗流程 32
3.2.1. 原料的前處理 32
3.2.2. 水熱法實驗流程 32
3.3 產物分析 37
3.3.1. 生物油產物分析 37
3.3.2. 液體產物分析 37
3.3.3. 固體產物分析 38
3.3.4. 氣體產物的分析 38
3.4 使用設備 43
3.5 實驗材料 45
3.6 分析方法 45
3.6.1. 熱重分析方法 45
3.6.2. 近似分析 46
3.6.3. 元素分析 48
3.6.4. 熱值分析 50
3.6.5. 總有機碳測定儀 51
3.6.6. 氣相層析儀-熱傳導偵測器 52
3.6.7. 氣相層析儀-火焰離子偵測器- 2 55
3.6.8. 氣相層析質譜儀-火焰離子偵測器 57
3.6.9. GC- FID模擬蒸餾 58
3.6.10. 方法偵測極限 60
第四章 結果與討論 61
4.1 原料性質分析 61
4.1.1. 基本特性分析 61
4.1.2. 熱重分析 66
4.2 反應時間對於結果的影響 70
4.2.1 生物油產物分析 70
4.2.2 液體產物分析 72
4.2.3 固體產物分析 76
4.2.4 氣體產物分析 83
4.3 反應溫度對於結果的影響 86
4.3.1 生物油產物分析 86
4.3.2 液體產物分析 97
4.3.3 固體產物分析 101
4.3.4 氣體產物分析 107
4.4 原料改變對於結果的影響 111
4.4.1. 生物油產物分析 111
4.4.2. 液體產物分析 115
4.4.3. 固體產物分析 117
4.4.4. 氣體產物分析 117
4.5 K2CO3的使用對於結果的影響 120
4.5.1. 生物油產物分析 120
4.5.2. 液體產物分析 125
4.5.3. 固體產物分析 125
4.5.4. 氣體產物分析 128
4.6 綜合討論 129
4.6.1. 生物油產物分析 129
4.6.2. 液體產物分析 130
4.6.3. 固體產物分析 131
4.6.4. 氣體產物分析 132
第五章 結論與建議 134
5.1 結論 134
5.2 建議 135
參考文獻 136
附錄A實驗情況 A-1
附錄B 生物油產物實驗數據 B-1
附錄C 液體產物實驗數據 C-1
附錄D 固體產物實驗數據 D-1


1.Akhtar, J. and Amin, N. A. S. (2011). "A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass." Renewable & Sustainable Energy Reviews 15(3): 1615-1624.
2.Bobleter, O. and Bobleter (1994). "Hydrothermal degradation of polymers derived from plants." Progress in Polymer Science 19(5): 797-841.
3.Brand, S., Kim, S. K., Susanti, R. F., Lee, H.-S., Kim, J. and Sang, B.-I. (2013). "Supercritical ethanol as an enhanced medium for lignocellulosic biomass liquefaction: Influence of physical process parameters." Energy 59: 173-182.
4.Brand, S., Hardia, F., Kim, J. and Suh, D. J. (2014). "Effect of heating rate on biomass liquefaction: Differences between subcritical water and supercritical ethanol." Energy 68期: 420-427.
5.Broell, D., Kaul, C., Krämer, A., Krammer, P., Richter, T., Jung, M., Vogel, H. and Zehner, P. (1999). "Chemistry in Supercritical Water." Angewandte Chemie (International ed.) 38(20): 2998-3014.
6.Chang, C. C., Andriamiraho, K., Duval, M., Yang, C. S., Chen, C. P., Chang, C. Y., and Shie, J. L., (2015). "Energy Densification of Waste Bamboo Chopsticks via Hydrothermal Treatment." WIT (Wessex Institute Transactions) Transactions on the Built Environment (ISSN: 1743- 3509) (EI).
7.Cheng, S., Wilks, C., Yuan, Z. and Leitch, M. (2012). "Hydrothermal degradation of alkali lignin to bio-phenolic compounds in sub/supercritical ethanol and water–ethanol co-solvent." Polymer Degradation and Stability 97(6): 839-848.
8.Christensen, P., Mrup, A. J., Mamakhel, A., Glasius, M., Becker, J. and Iversen, B. B. (2014). "Effects of hetero geneous catalyst in hydrothermal liquefaction of dried distillers grains with solubles." Fuel 123(期): 158-166.
9.Chen, Y. H. (2015). “The Torrefaction of Waste Bamboo Chopsticks to Manufacture Solid Biofuel”.
10.Dote, Y., Sawayama, S., Inou, S., Minowa, T. and Yokoyama, S.-Y. (1994). "Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction." Fuel 73(12): 1855-1857.
11.Duan, P. and Savage, P. E. (2011). "Hydrothermal Liquefaction of a Microalga with Hetero geneous Catalysts." Industrial & Engineering Chemistry Research 50(1): 52-61.
12.Durak, H. and Aysu, T. (2014). "Effects of catalysts and solvents on liquefaction of Onopordum heteracanthum for production of bio-oils." Bioresource Technology 166: 309-317.
13.Fan, S.-P., Zakaria, S., Chia, C.-H, Jamaluddin, F., Nabihah, S., Liew, T.-K and Pua, F-L. (2011). "Comparative studies of products obtained from solvolysis liquefaction of oil palm empty fruit bunch fibres using different solvents." Bioresource technology 102(3): 3521-3526.
14.Galbe, M. and Zacchi, G. (2002). "A review of the production of ethanol from softwood." Applied mMicrobiology and Biotechnology 59(6): 618-628.
15.Goyal, H. B., Aysu, T. and Saxena, R.C. (2008). "Bio-fuels from thermochemical conversion of renewable resources: A review." Renewable & Sustainable Energy Reviews 12(2): 504-517.
16.Heilmann, S. M., Jader, L. R., Harned, L. A., Sadowsky, M. J., Schendel, F. J., Lefebvre, P. A., Keitz, M. G. V. and Valentas, K. J. (2011). "Hydrothermal carbonization of microalgae II. Fatty acid, char, and al gal nutrient products." Applied Energy 88(10): 3286-3290.
17.Howard, R. L. (2004). "Lignocellulose biotechnology: issues of bioconversion and enzyme production." African Journal of Biotechnology 2(12): 602- 619.
18.Hu, G. (2008). "Feedstock pretreatment strate gies for producing ethanol from wood, bark, and forest residues." BioResources 3(1): 270- 294.
19.Kaar, W. and Kaar (2000). "Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover." Biomass & Bio- Energy 18(3): 189-199.
20.Kelly-Yong, T. L., Lee, K. T., Mohamed, A. R. and Bhatia, S. (2007). "Potential of hydrogen from oil palm biomass as a source of renewable Energy worldwide." Energy policy 35(11): 5692-5701.
21.Krammer, P. and Vogel, H. (2000). "Hydrolysis of esters in subcritical and supercritical water." The Journal of Supercritical Fluids 16(3): 189-206.
22.Kruse, A. and Dinjus, E. (2007). "Hot compressed water as reaction medium and reactant." The Journal of Supercritical Fluids 39(3): 362-380.
23.Kruusement, K., Luik, H., Waldner, M., Vogel, F and Luik, L. (2014). "Gasification and liquefaction of solid fuels by hydrothermal conversion methods." 108(期): 265-273.
24.Laureano Perez, L., Teymouri, F., Alizadeh, H. and Dale, B. E. (2005). "Understanding Factors that Limit Enzymatic Hydrolysis of Biomass: Characterization of Pretreated Corn Stover." Applied Biochemistry and Biotechnology 124(1-3): 1081-1100.
25.Luetkens, M. and Cohen S. (2010). “Methods of producing jet fuel from nature oil feedstocks through oxygen- cleaved reactions.” Google patents.
26.Liu, Z. and Zhang, F.-S. (2008). "Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks." Energy Conversion and Mana gement 49(12): 3498-3504.
27.Lez Barreiro, D., Prins, W. L., Ronsse, F., Brilman, W. (2013). "Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects." Biomass and BioEnergy 53(0): 113-127.
28.Naka gawa, T., Ozaki, H., Kamitanaka, T., Takagi, H., Matsuda, T., Kitamura, T. and Harada, T. (2003). "Reactions of supercritical alcohols with unsaturated hydrocarbons." The Journal of Supercritical Fluids 27(3): 255-261.
29.Patwardhan, P. R., Dalluge, D. L., Shanks B. H., Brown R. C. (2011). "Distinguishing primary and secondary reactions of cellulose pyrolysis." Bioresource Technology 102(8): 5265-5269.
30.Peterson, A. A., Vogel, F., Lachance, R. R., Froling, M., Antal, M. J. and Tester Jefferson W. (2008). "Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies." Energy & Environmental Science 1(1): 32.
31.Pimchuai, A., Dutta, A. and Basu, P. (2010). "Torrefaction of Agriculture Residue To Enhance Combustible Properties " Energy & Fuels 24(9): 4638-4645.
32.Ross, A. B., Biller, P., Kubacki, M.L., Li, H., Lea-Langton, A. R. and Jones, J.M. (2010). "Hydrothermal processing of microalgae using alkali and organic acids." Fuel 89(9): 2234-2243.
33.Sayigh, A. (2012). "Biofuels from Waste Materials." Comprehensive Renewable Energy 5, Elsevier.
34.Saha, B. S. (2003). "Hemicellulose bioconversion." Journal of Industrial Microbiology & Biotechnology 30(5): 279-291.
35.Solak, A. and P. Rutkowski (2014). "The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene." Waste Mana gement 34(2): 504-512.
36.Sugano, M., Takagi, H., Hirano, K. and Mashimo, K. (2008). "Hydrothermal liquefaction of plantation biomass with two kinds of wastewater from paper industry." Journal of materials science 43(7): 2476-2486.
37.Tekin, K., Karagöz, S. and Bektaş, S. (2013). "Effect of sodium perborate monohydrate concentrations on product distributions from the hydrothermal liquefaction of Scotch pine wood." Fuel Processing Technology 110(期): 17-23.
38.Toor, S. S., Rosendahl, L. and Rudolf, A. (2011). "Hydrothermal liquefaction of biomass: A review of subcritical water technologies." Energy 36(5): 2328-2342.
39.Ververis, C., Georghiou, K., Danielidis, D., Hatzinikolaou, D.G., Santas, P., Santas, R. and Corleti, V. (2007). "Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements." Bioresource Technology 98(2): 296-301.
40.Xu, C. and Lancaster, J. (2008). "Conversion of secondary pulp/paper sludge powder to liquid oil products for Energy recovery by direct liquefaction in hot-compressed water." Water Research 42(6): 1571-1582.
41.Yang, Y. F., Feng, C. P., Inamori, Y. and Maekawa, T. (2004). "Analysis of Energy conversion characteristics in liquefaction of algae." Resources, Conservation and Recycling 43(1): 21-33.
42.Yu, g. (2011). "Hydrothermal liquefaction of low lipid content microalgae into bio-crude oil." Transactions of the ASABE 54(1): 239.
43.Yuan, Z., Cheng, S., Leitch, M. and Xu, C. C. (2010). "Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol." Bioresource technology 101(23): 9308-9313.
44.Yang, J., Xu, M., Zhang, X., Hu, Q., Sommerfeld, M., Chen, Y. (2011). "Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance." Bioresource technology 102(1): 159-165.
45.Zhang, B., Keitz, M. v. and Valentas, K. (2009). "Thermochemical liquefaction of High-diversity grassland perennials." Journal of analytical and applied pyrolysis 84(1): 18-24.
46.Zhong, C. and Wei, X. (2004). "A comparative experimental study on the liquefaction of wood." Energy 29(11): 1731-1741.
47.Zhu, J. Y. and Pan, X. J. (2010). "Woody biomass pretreatment for cellulosic ethanol production: Technology and Energy consumption evaluation." Bioresource technology 101(13): 4992-5002.
48.Zmierczak, W. W. and J. D. Miller (2011). Processes for catalytic conversion of lignin to liquid bio-fuels and novel bio-fuels
49.Zou, S., Wu, Y., Yang, M., Imdad, K., Li, C. and Tong J. (2010). "Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake." Energy 35(12): 5406-5411.
50.International Energy Agency, IEA (2015). “Bioenergy.” from http://www.iea.org. (Accessed in June 2015)
51.International Air Transport Association, I. A. T. A. (2014). “Environment: how green is your cargo?” from http://www.iata.org/. (Accessed in January 2015)
52.Intergovernmental Panel on Climite Change, I. P. C. C. (2014). “Aviation and the Global Atmosphere” from http://www.ipcc.ch. (Accessed in January 2015)
53.CSGNetwork (2015). "Aviation Jet Fuel Information." from http://www.csgnetwork.com. (Accessed in January 2015)
54.DeMorro, C. (2008). "First Algae Biodiesel Plant Goes Online: April 1, 2008." from http://gas2.org. (Accessed in January 2015)
55.行政院環境保護署(2015). "少用免洗餐具." from http://www.epa.gov.tw/.
56.台灣中油股份有限公司(2006). "航空燃油 JET A-1規範." from http://new.cpc.com.tw/.
57.林烱暐(2015). "生質能應用原理." from http://www.enedu.org.tw.
58.科技台灣(2012). "生質能(Biomass energy)." from http://www.hightech.tw.
59.陳芃(2010). "從微小變為顯著- 微藻引領第三代生質燃料發展." 能源報導. from http://energymonthly.tier.org.tw.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top