跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 11:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳劼立
研究生(外文):Chieh-Li Chen
論文名稱:碳酸化電弧爐渣應用於水泥取代之研究
論文名稱(外文):Carbonation of Electric Arc Furnace Slag for Cement Replacement
指導教授:蔣本基蔣本基引用關係
指導教授(外文):Pen-Chi Chiang
口試委員:談駿嵩顧洋張怡怡陳奕宏
口試委員(外文):Chung-Sung TanYoung KuEE ChangYi-Hung Chen
口試日期:2015-07-13
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:169
中文關鍵詞:二氧化碳捕捉、超重力旋轉填充床、還原碴、反應曲面法、水泥取代
外文關鍵詞:Carbon CaptureAccelerated CarbonationRotating Packed BedElectric Arc Furnace SlagCement Replacement
相關次數:
  • 被引用被引用:1
  • 點閱點閱:316
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
CO2對於溫室效應的影響是無法忽視的,如何減少更多的二氧化碳排放進入大氣中以及減緩全球暖化的發生,是個非常急迫性的課題。在日常生活中實行節能減碳雖能有效的降低能源的消耗,並減少CO2的排放,但是要有更顯著的效果,應該要針對CO2排放的最大來源─化石燃料業著手進行改善。鹼性固體廢棄物碳酸化程序係根據高鹼度的固體廢棄物溶出鈣、鎂等鹼土金屬離子做為吸附質,並且與CO2 氣體溶解於異體內的碳酸根離子結合形成固態碳酸鈣,同時達到CO2 的捕捉以及安定廢棄物的目的。影響碳酸化效率主要為反應時間(1-60分鐘)、溫度(20-70˚C)、旋轉床轉速(700-1200rpm)以及固液比(20-40)。本研究目標為:(一)以電弧爐還原碴作為吸附材料,利用超重力旋轉填充床進行CO2捕獲;(二)利用反應曲面法評估各種不同參數條件下捕獲CO2的效率;(三)利用碳酸化反應後的爐渣進行水泥取代試驗,以檢測碳酸化電弧爐碴作為水泥取代材料之可行性。

In this study, an integrated process of waste-to-resource technology was developed. Carbon dioxide (CO2) sequestration using the accelerated carbonation of electric arc furnace (EAF) slag under various operational conditions in a high-gravity rotating packed bed (RPB) was investigated. Moreover, wastewater neutralization and product utilization were investigated as well. The performance of CO2 capture by EAFS were evaluated under various levels of reaction time, reaction temperature, rotational speed and liquid-to-solid ratio. The samples of reacted slurry were analyzed quantitatively and qualitatively by using thermogravimetric analysis (TGA) and X-ray diffraction (XRD), respectively. Furthermore, the morphology and microstructure of samples were also examined using scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX).
Furthermore, utilization of electric arc furnace (EAF) slag as cement replacing materials for Portland cement has been examined. Both fresh and carbonated EAF slag were blended in the cement with the percentages of 5, 10, 15 and 20% replacements of Ordinary Portland Cement (OPC) were tested for compressive strength. According to ATSM C109 regulation, the cement mortars were tested at 3, 7 and 28 days of curing age with the 50 mm x 50 mm x50 mm molds. The physico-chemical characteristics and structure of the hardened cement mortars were studied. In addition, the performance of EAF slag as a filler in the OPC-EAF slag mortars was examined.


致謝……………………………………………………………………………….……i
中文摘要………………………………………………………………………………ii
Abstract……………………………………………………………………………….iii
Contents……………………………………………………………………………….iv
List of Figures………………………………………………………………….…….iix
List of Tables…………………………………………………………………………..x
Oral Defense Comments……………………………………………………………..xii
Chapter 1 Introduction………………………………………………………………1-1
1-1 Research Background 1-1
1-2 Objectives 1-3
Chapter 2 Literature Review………………………………………………………...2-1
2-1 Accelerated Carbonation for CO2 Fixation 2-1
2-1-1 Mineral Carbonation 2-2
2-1-2 Process Chemistry and Mechanism 2-7
2-1-3 Feedstock for Carbonation: Alkaline Solid Wastes 2-7
2-1-4 Characterization of Rotating Packed Bed (RPB) 2-9
2-1-4-1 Advantages of the RPB 2-10
2-1-4-2 Application of RPB for Carbonation Reaction 2-11
2-1-5 Reaction Kinetics 2-12
2-2 Electric arc furnace slag 2-16
2-2-1 Characteristics of EAF slag 2-16
2-2-2 Production of EAF and Slag Generation 2-19
2-2-2-1 Furnace Charging 2-20
2-2-2-2 Melting 2-21
2-2-2-3 Refining 2-22
2-2-2-4 De-Slagging 2-23
2-3 Utilization of Hydraulic cement 2-23
2-3-1 Characterization of Cements 2-24
2-3-1-1 Manufacturing Process of Cement 2-24
Table 2-4. Composition of Ordinary Portland cement with chemical composition and weight percentage. 2-25
2-3-1-2 Composition of Cement 2-26
2-3-2 Workability 2-28
2-3-2-1 Standard Consistency 2-28
2-3-2-2Setting Time 2-28
2-3-3 Mechanical Property 2-29
2-3-3-1 Compressive Strength 2-29
2-3-4 Cement Replacement with EAFS 2-30
Chapter 3 Materials and Methods…………………………………………………...3-1
3-1 Research Flowchart 3-1
3-2 Materials 3-2
3-2-1 Source of Agents 3-2
3-2-2 High-gravity Rotating Packed Bed (RPB) 3-2
3-3 Experiment 3-5
3-3-1 Slag Pretreatment 3-5
3-3-2 Carbonation Process via Rotating Packed Bed 3-6
3-3-3 Experimental Parameters of Carbonation 3-9
3-3-4 Experimental Parameters of Cement Replacement 3-9
3-3-5 Carbonation Procedure 3-11
3-3-6 Cement Replacement Procedure 3-12
3-3-6-1 Procedure of Standard Consistency 3-12
3-3-6-2 Procedure of Setting Time 3-13
3-3-6-3 Procedure of Compressive Strength 3-14
3-4 Analytical Techniques 3-16
3-4-1 Thermogravimetric Analysis (TGA) 3-16
3-4-2 Scanning Electron Microscope (SEM) Analysis 3-19
3-4-3 X-ray Diffractometer (XRD) Analysis 3-20
3-5 Carbon Dioxide Analysis Method 3-21
3-5-1 Degree of sequestration 3-21
Chapter 4 Results and Discussion…………………………………………………...4-1
4-1 Carbonation of EAFS in a RPB 4-1
4-1-1 TGA Results 4-1
4-1-2 pH Value Monitoring 4-5
4-1-3 Effects of Temperature 4-6
4-1-4 Effects of L/S Ratio 4-8
4-1-5 Effects of Rotating Speed 4-11
4-1-6 Summary 4-13
4-2 Model Evaluation 4-15
4-2-1 Reaction Kinetics 4-15
4-2-2 Response Surface Methodology (RSM) 4-25
4-2-3 Summary 4-30
4-3 Utilization of carbonated EAFS in Cement Mortar 4-32
4-3-1 Characteristics of EAFS 4-32
4-3-1-1 Physico-chemical Properties of EAFS 4-32
4-3-1-2 Toxicity characteristic leaching procedure (TCLP) test 4-35
4-3-1-3 ICP-OES results 4-37
4-3-1-3 Scanning Electron Microscope (SEM) Analysis 4-38
4-3-1-4 X-ray Powder Diffracttometer (XRD) Analysis 4-40
4-3-2 Workability 4-42
4-3-1-1 Standard Consistency 4-43
4-3-1-2 Setting Time 4-45
4-3-3 Mechanical Property 4-47
4-3-2-1 Compressive Strength 4-47
4-3-4 Summary 4-60
4-4 System Optimization 4-64
4-4-1 Maximum Carbonation Conversion in an RPB 4-64
4-4-1 Energy Consumption 4-66
4-4-2 Summary 4-68
Chapter 5 Conclusion and Recommendations………………………………………5-1
5-1 Conclusions 5-1
5-2 Recommendations 5-3
Chapter 6 References………………………………………………………………..6-1
Chapter 7 Appendix…………………………………………………………………7-1


Abu-Eishah, S.I., El-Dieb, A.S., Bedir, M.S., Performance of concrete mixtures made with electric arc furnace (EAF) steel slag aggregate produced in the Arabian Gulf region. Construction and Building Materials, 34 (2012) 249-256.
Alshamsi, A., Mircrosilica and ground granulated blast furnace slag effects on hydration temperature, Cement and Concrete Research, 27 (1997) 1851-1859.
American Iron and Steel Institute (AISI), “How Steel is Made,” October 2011, http://www.steel.org/.
Amin, M.S., El-Gamal, S.M.A., Abo-El-Enein, S.A., El-Hosiny, F.I., Ramadan, M., Physico-chemical characteristics of blended cement pastes containing electric arc furnace slag with and without silica fume, HBRC Journal (2014).
Bensted, J. and Barnes, P., Structure and Performance of Cements. Second Edition (2002).
Bentz, D.P., Garboczi, E.J., Haecker, C.J., Jensen, O.M., Effects of cement particle size distribution on performance properties of Portland cement-based materials, Cement and Concrete Research, 29 (1999) 1663-1671.
Bobicki, E.R., Liu, Q., Xu, Z., Zeng., H., Carbon capture and storage using alkaline industrial wastes. Progress in Energy and Combustion Science 38 (2012) 302-320.
Brandt, D. and Warner, J.C. Metallurgy Fundamentals, Goodheart-Willcox, Tinley Park, Ill, USA, 3rd edition, 2005.
Cassagnabere, F., Mouret, M., Escadeillas, G., Early hydration of clinker–slag–metakaolin combination in steam curing conditions, relation with mechanical properties. Cement and Concrete Research, 39 (2009) 1164-1173.
Chang, E.E., Chen, C.H., Chen, Y.H., Pan, S.Y., Chiang, P.C., Performance evaluation for carbonation of steel-making slags in a slurry reactor. Journal of Hazardous Materials, 186 (2011) 558-564.
Chang, E.E., Pan, S.Y., Chen, Y.H., Tang, C.S., Chiang, P.C., Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed. Journal of Hazardous Materials, 227-228 (2012) 97-106.
Costa, G., Accelerated carbonation of minerals and industrial residues for carbon dioxide storage, UNIVERSITÀ DEGLI STUDI DI ROMA, 2009.
Costa, G., Baciocchi, R., Polettini, A., Pomi, R., Hills, C.D., Carey, P.J., Current status and perspectives of accelerated carbonation process on municipal waste combustion residues, Environmental Monitoring and Assessment, 135 (2007) 55-75.
Damtoft, J.S., Lukasik, J., Herfort, D., Sorrentino, D., Gartner, E.M., Sustainable development and climate change initiatives. Cement and Concrete Research. 38 (2008) 115-127.
Davidovits, J., Moukwa, M., Sarkar, S.L., Luke, K., Geopolymer Cement to Minimize Carbon-dioxide Greenhouse Warming Ceramic Transaction Cement-based Material: Present future environmental aspect, American Ceramic Society, Westerville, 37 (1993) 165-181.
Eloneva, S., Teir, S., Salminen, J., Fogelholm C.-J., Zevenhoven, R., Fixation of CO2 by carbonating calcium derived from blast furnace slag, Energy 33 (2008) 1461-1467.
Energy Manager Training (EMT), “Iron and steel process,” July 2008, http://www.energymanagertraining.com/.
Fernandez, B.M., Simons, S.J., Hills, C.D., Carey, P.J., A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2, Journal of hazardous materials 112 (2004) 193-205.
Gambhir, M.L., Concrete Technology, Tata McGraw-Hill Education, (2013), Fifth Edition.
Guneyisi, E., Gesoglu, M., Ozbay, E., Strength and drying shrinkage properties of self-compacting concretes incorporating multi-system blended mineral admixtures, Construction and Building Materials, 24 (2010) 1878-1887.
Hekal, E.E., Abo-El-Enein, S.A., El-Korashy, S.A., Megahed, G.M., El-Sayed, T.M., Hydration characteristics of Portland cement - Electric arc furnace slag blends, HBRC Journal, 9 (2013) 118-124.
Ho, C.S., Shih, S.M., Factors influencing the reaction of Ca(OH)2 with SO2, Journal of Chinese Institute of Chemical Engineers, 1993 (24) 187-195.
Ho, C.S., Shih, S.M., Lee, C.D., Influence of CO2 and O2 on the reaction of Ca(OH)2 under spray-drying flue gas desulfurization conditions, Industrial & Engineering Chemistry Research, 1996 (35) 3915-3919.
Huijgen, W., Witkamp, G.-J., Comans, R., Mineral CO2 sequestration in alkaline solid residues, Greenhouse Gas Control Technologies, 2 (2005) 2415-2418.
Huntzinger, D.N., Gierke, J.S., Sutter, L.L., Kawatra, S.K., Eisele, T.C., Mineral carbonation for carbon sequestration in cement kiln dust from waste piles, Journal of Hazardous Materials, 168 (2009) 31-37.
Intergovernmental Panel on Climate Change (IPCC), 2007. IPCC, summary for policy makers of the third volume of the fourth assessment report of IPCC. IPCC fourth assessment report, Working Group III, Geneva, Switzerland. See also: http://arch.rivm.nl/env/int/ipcc/docs/FAR/ApprovedSPM0405rev4b.pdfS.
Juenger, M.C.G., Winnefeld, F., Provis, J.L., Ideker, J.H., Advances in alternative cementitious binders, Cement and Concrete Research, 41 (2011) 1232-1243.
Kaantee, U., Zevenhoven, R., Backman, R., Hupa, M., Cement manufacturing using alternative fuels and the advantages of process modeling, Fuel Processing Technology, 85 (2004) 293–301.
Kelly, K.E., Silcox, G.D., Sarofim, A.F., Pershing, D.W., An evaluation of ex situ, industrial-scale, aqueous CO2 mineralization, International Journal of Greenhouse Gas Control, 5 (2011) 1587-1595.
Khoo1, H.H., Bu, J., Wong, R.L., Kuan, S.Y., Sharrant, P.N., Carbon capture and utilization: preliminary life cycle CO2, energy, and cost results of potential mineral carbonation, Energy Procedia, 4 (2011) 2494-2501.
Kodama, S., Nishimoto, T., Yamamoto, N., Yogo, K., Yamada, K., Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution, Energy, 33 (2008) 776-784.
Kosmatka, S. & Panarese, W., Design and Control of Concrete Mixes, Portland Cement Association, (1988), Skokie, Ill. pp. 205.
Kourounis, S., Tsivilis, S., Tsakiridis, P.E., Papadimitriou, G.D., Tsibouki, Z., Properties and hydration of blended cements with steelmaking slag, Cement and Concrete Research, 37 (2007) 815-822.
Kumar, M., Singh, S.K., Singh, N.P., Singh, N.B., Hydration of multicomponent composite cement: OPC-FA-SF-MK, Construction and Building Materials, 36 (2012) 681-686.
Kumar, R., Kumar, S., Jena, S.K., Melhotra, S.P., Hydration of mechanically activated granulated blast furnace slag, Metallurgical And Materials Transactions, 36 (2005) 873-883.
Kuusik, R., Uibu, M., Mineral trapping of CO2 via oil shale ash aqueous carbonation: Controlling mechanism of process rate and development of continuous-flow reactor system, Oil Shale, (2009) 26, 40.
Lackner, K.S., Wendt, C.H., Butt, D.P., Joyce, E.L., Sharp, D.H., Carbon dioxide disposal in carbonate minerals, Energy, 20 (1995) 1153-1170.
Lekakh, S.N., Rawlins, C.H., Robertson, D.G.C., Richards, V.L., Peaslee, K.D., Kinetics of aqueous leaching and carbonization of steelmaking slag, Metallurgical and Materials Transactions, B 39 (2008a) 125-134.
Lekakh, S.N., Robertson, D.G.C., Rawlins, C.H., Richards, V.L., Peaslee, K.D., Investigation of a two-stage aqueous reactor design for carbon dioxide sequestration using steelmaking slag, Metallurgical and Materials Transactions, B 39 (2008b) 484-492.
Li, Z., Ding, Z., Property improvement of Portland cement by incorporating with metakaolin and slag, Cement and Concrete Research, 33 (2003) 579-584.
Lin, C.-C., Chen Y.-W., Performance of a cross-flow rotating packed bed in removing carbon dioxide from gaseous streams by chemical absorption, International Journal of Greenhouse Gas Control, 5 (2011) 668-675.
Liu, C.F., Shih, S.M., A surface coverage model for the reaction of Ca(OH)2 with SO2 at low temperatures, Journal of Chinese Institute of Chemical Engineers, 33 (2002) 407-413.
Liu, C.F., Shih, S.M., Lin, R.B., Kinetics of the reaction of Ca(OH)2/fly ash sorbent with SO2 at low temperatures, Chemical Engineering Science, 57 (2002) 93-104.
Manso, J.M., Polanco, J.A., Losanez, M., Gonzalez, J.J., Durability of concrete made with EAF slag as aggregate, Cement and Concrete Composites, 28 (2006) 528–534.
Manso, J.M., Polanco, J.A., Losanez, M., Gonzalez, J.J., Durability of concrete made with EAF slag as aggregate, Cement & Concrete Composites 28 (2006) 528-534.
Maslehuddin, M., Awan, F.R., Shameem, M., Ibrahim, M., Ali, M.R., Effect of electric arc furnace dust on the properties of OPC and blended cement concretes, Construction and Building Materials, 25 (2011) 308-312.
Massazza, F. “Pozzolana and pozzolanic cements.” In: Lea’s Chemistry of cement and concrete (Hewlett PC(ed.)). Oxford: Elsevier Butterworth-Heinemann, (2004) 471-636.
Massazza, F., Daimond, M., Paper presented at the Proceedings of 9th International Congress on the Chemistry of Cement, Chemistry of hydration of cements and cementitious systems, (1992).
Mehta, P.K., and Monteiro, P.J., Concrete: microstructure, properties, and materials, 2006, (Vol. 3): McGraw-Hill New York.
Metz, B.D., editor, IPCC Special Report on carbon dioxide capture and storage, Prepared by working group III of the intergovernmental panel on climate change, Cambridge UK: Cambridge University Press; 2005.
Mindess, S. and Young, J.F., Concrete, Prentice-Hall, Inc., Englewood Cliffs, NJ,(1981) pp. 671.
Montes-Hernandez, G., Perez-Lopez, R., Renard, F., Nieto, J.M., Charlet, L., Mineral sequestration of CO2 by aqueous carbonation coal combustion fly-ash, Journal of Hazardous Materials, 161 (2009) 1347-1354.
Motz, H., and Geiseler, J., Products of steel slags: An opportunity to save natural resources, Waste Management Research, 21(2001) 285-293.
Muhmood, L., Vitta, S., Venkateswaran, D., Cementitious and pozzolanic behavior of electric arc furnace steel slags, Cement and Concrete Research, 39 (2009) 102-109.
Nduagu, E., Bergerson, J., Zevenhoven, R., Life cycle assessment of CO2 sequestration in magnesium silicate rock - A comparative study, Energy Conversion and Management, 55 (2012) 116-126.
Neville, A.M., (1995), Properties of Concrete, 4th ed., London, Pitman, pp. 8 - 30.
Oelkers, E.H., Gislason, S.R., Matter, J., Mineral Carbonation of CO2. Elements, 4 (2008) 302-320.
Pan, S.Y., Chang, E.E., Chiang, P.C., CO2 capture by accelerated carbonation of alkaline wastes: A review on its principles and applications, Aerosol and Air Quality Research, 12 (2012) 770-791.
Pan, S.Y., Chiang, P.C., Chen, Y.H., Chang, E.E., Ex situ CO2 capture by carbonation of steelmaking slag coupled with metalworking wastewater in a rotating packed bed, Environmental Science & Technology, 47 (2013) 3308-3315.
Pan, S.Y., Chiang, P.C., Chen, Y.H., Tan, C.S., Chang, E.E., Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: Maximization of carbonation conversion, Applied Energy, 113 (2014) 267-276.
Park, A.H. A., Fan, L.S., CO2 mineral sequestration: physically activated dissolution of serpentine and pH swing process., Chemical Engineering Science, 59 (2004) 5241-5247.
Pellegrino, C., Cavagnis, P., Faleschini, F., Brunelli, K., Properties of concretes with black/oxidizing electric arc furnace slag aggregate, Cement and Concrete Composites, 37 (2013) 232-240.
Poon, C.S., Kou, S.C., Lam, L., Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete, Construction and Building Materials, 20 (2006) 858-865.
Ramezanianpour, A.A., Malhotra, V.M., The effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag or fly ash or silica fume, in: V.M. Malhotra (Ed.), Third CANMET/ACI International Conference on Durability of Concrete, 1994, pp. 739-752.
Ramshaw, C., "HIGEE" Distillation - An Example of Process Intensification. Chemical Engineering Journal, (1983) 13-14.
Rojas, F., Sáanchez de Rojas, M.I., Uría, A., Study of the instability of black slags from EAF steel industry, Materiales de Construcción, 52 (2002) 79-83.
Rojas, M.F., Sanchez de Rojas, M.I., Chemical assessment of the electric arc furnace slag as construction material, expansive compounds, Cement and Concrete Research, 34 (2004) 1881-1888.
Saikiaa, N.J., Senguptaa, P., Gogoib, P.K., Borthakura, P.C., Cementitious properties of metakaolin-normal Portland cement mixture in the presence of petroleum effluent treatment plant sludge, Cement and Concrete Research, 32 (2002) 1717-1724.
Sanna, A., Dri, M., Maroto-Valer, M., Carbon dioxide capture and storage by pH swing aqueous mineralization using a mixture of ammonium salts and antigorite source, Fuel, 114 (2012) 153-161.
Schoenberger, H. “Final draft: best available techniques reference document on the production of iron and steel,” Publications of EC: European Commission, Joint Research Centre, IPTS, European IPPC Bureau, 2001.
Seetharaman, S., Fundamentals of Metallurgy,Woodhead Publishing and CRC Press, Boca Raton, Fla, USA, 2005.
Seitfritz, W., CO2 disposal by means of silicates, Nature, (1990) 345-486.
Shih, S.M., Ho, C.S., Song, Y.S., Lin, J.P., Kinetics of the reaction of Ca(OH)2 with CO2 at low temperature, Industrial & Engineering Chemistry Research, 1999 (38) 1316-1322.
Shivhare, M.K., Rao, D.P., Kaistha, N., Mass transfer studies on split-packing and single-block packing rotating packed beds, Chemical Engineering and Processing: Process Intensification, 71 (2013) 115-124.
Steel statistical yearbook, International Iron and Steel Institute, Brussels. 2009.
Tai, C.Y., Chen, W.R., Shih, S.M., Factors affecting wollastonite carbonation under CO2 supercritical conditions, AIChE Journal, 52 (2006) 292-299.
Teir, S., Fixation of carbon dioxide by producing carbonates from minerals and steelmaking slags, Department of Energy Technology, Helsinki University of Technology, (2008).
Tomellini, R., ed. (1999). “Summary report on RTD in iron and steel slags: Development and perspectives.” Technical Steel Research, Report prepared for the European Commission EUR 19066 EN 1999, ISBN 92-828-6650-5, Brussels, Belgium, 351-352.
U.S. Geological Survey. Mineral Commodity Summaries. January 2009.
Van Gerven, T., Van Baelen, D., Dutre, V., Vandecasteele, C., Influence of carbonation and carbonation methods on leaching of metals from mortars, Cement and Concrete Research, (2003).
Vazquez-Ramonich, E., and Barra, M., Reactivity and expansion of electric arc furnace slag in their application in construction, Materiales de Construcción, 51 (2001) 137-148.
Wang, G., Wang, Y., Gao, Z., Use of steel slag as a granular material: volume expansion prediction and usability criteria, Journal of Hazard Materials, 184 (2010) 555-560.
Wang, Q. and Yan, P., Hydration properties of basic oxygen furnace steel slag, Construction and Building Materials, 24 (2010) 101-109.
Yang, K.H., Jung, Y.B., Cho, M.S., Tae, S.H., Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete, Journal of Cleaner Production, (2014) 1-10.
Yildirim, I.Z., and Prezzi, M., Chemical, Mineralogical, and Morphological Properties of Steel Slag, Advances in Civil Engineering, vol. 2011, Article ID 463638, 13 pages, 2011. doi:10.1155/2011/463638.
Zhang, T., Yu, Q., Wei, J., Zhang, P., Effects of size fraction on composition and fundamental properties of Portland cement, Construction and Building Materials, 25 (2011) 3038-3043.
黃偉慶 (2000),「電弧爐煉鋼爐碴特性及取代混凝土粗股材之研究」,碩士論文,國立中央大學土木工程研究所,中壢。
傅國柱 (2002),「還原碴取代部分水泥之研究」,碩士論文,國立中央大學土木工程研究所,中壢。
陳立 (2003),「電弧爐氧化碴為混凝土骨材之可行性研究」,碩士論文,國立中央大學土木工程研究所,中壢。
潘述元 (2011),「在超重力旋轉填充床中利用煉鋼爐石碳酸化反應進行二氧化碳捕捉」,碩士論文,國立台灣大學環境工程學研究所,台北。
林柏彰 (2012),「還原爐碴取代水泥性質之研究」,碩士論文,國立臺北科技大學土木與防災研究所,台北。
曾仕文 (2012),「電弧爐還原碴應用於控制性低強度材料及其安定化成效評估研究」,碩士論文,國立中央大學土木工程研究所,中壢。
陳則綸 (2012),「以轉爐石與冷軋廢水於旋轉填充床捕捉二氧化碳之研究」,碩士論文,國立台灣大學環境工程學研究所,台北。
林可欣 (2013),「利用RSM及LCA建立轉爐石捕獲二氧化碳之最適化研究」,碩士論文,國立台灣大學環境工程學研究所,台北。
王溫翔 (2014),「應用溫室氣體減量技術於電弧爐煉鋼廠之生命週期評估」,碩士論文,國立台灣大學環境工程學研究所,台北。
潘述元 (2015),「以系統式角度發展與最適化超重力碳酸化程序進行碳捕捉與再利用」,博士論文,國立台灣大學環境工程學研究所,台北。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top