跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 08:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:范振軒
研究生(外文):Chen-Shiuan Fan
論文名稱:以影像顯示產業廢棄物製成低溫共燒陶瓷之資材化研究
論文名稱(外文):Materialization Study on Transformation of Low Temperature Co-fired Ceramic from TFT-LCD Waste Glass
指導教授:李公哲李公哲引用關係
口試委員:張慶源段維新侯嘉洪王鯤生
口試日期:2014-07-25
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:117
中文關鍵詞:影像顯示產業廢棄物低溫共燒陶瓷介電性質
外文關鍵詞:TFT-LCD Waste GlassLTCCDielectric properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用薄膜電晶體液晶顯示器(Thin-film transistor liquid-crystal display, TFT-LCD)廢素玻璃,其SiO2純度超過60 wt%而具備優良介電性質的特性,將其改質進行資材化再利用製成低溫共燒陶瓷(Low-Temperature Co-fired Ceramics, LTCC)。LTCC的原料是可在小於900 oC的溫度,與低溶點、高導電性的電極材料進行共燒,產出體積小而符合電子產品輕薄短小的設計原則。然而,TFT-LCD廢素玻璃粉末的燒結溫度在900 oC以上,故有改質降低其燒結溫度的必要性。再者,為使電子設備具備快速的訊號傳輸速度,其介電常數(Dielectric constant)必須小於9;為降低電子產品實際應用時之能量損失,其品質因子須大於300,故本研究以TFT-LCD廢素玻璃添加CaCO3、CaF2與CaB2O4等鈣系調質劑進行調質,除利用玻璃修飾劑(鈣離子)降低其燒結溫度外,並使配比成份與商用之CAS(CaO-Al2O3- SiO2)系與CBS (CaO-B2O3-SiO2)系LTCC相近以優化其介電性質,期其燒結溫度及介電性質符合LTCC應用規範之要求。考量調配之混和原料粉末是否經過熔融玻璃化程序將影響其燒結特性與介電性質,本研究採用「混燒」(混合原料粉末直接燒結)與「玻璃陶瓷」(混合原料粉末先熔融玻璃化後再進行燒結)兩種製程進行資材化研究,並探討製程差異的影響。
研究成果顯示,不同調質劑種類降低TFT-LCD燒結溫度之機制不同,故合適之製程亦不相同。添加CaF2與CaCO3之CAS系統,以「破壞矽氧結構性」機制來降低燒結溫度,適合採玻璃陶瓷製程;添加CaB2O4之CBS系統,以「產生液相輔助燒結」機制來降低燒結溫度,適合採混燒製程。優化介電性質部分,密度與孔隙率是介電常數的主要影響因子,CAS系配比因有較高之緻密化程度,故其介電常數比CBS系配比高。當CaCO3與CaB2O4的添加量上升會使品質因子下降;隨CaF2之添加量上升則因F離子存在而使品質因子增加,可改善其介電性質。製程差異對介電性質的影響在於採玻璃陶瓷製程產出材料之緻密化程度較高而介電常數較高,且因成分均勻、相較單純缺陷較少,故品質因子較高。
本研究成功將TFT-LCD玻璃高於900 oC的燒結溫度,藉由添加CaCO3、CaF2與CaB2O4等調質劑降至900 oC以下,並降低其介電損失而改善其介電性質,使其燒結溫度與介電性質符合商用LTCC的應用規範。


A low-temperature co-fired ceramics (LTCC) was prepared from thin-film transistor liquid-crystal display (TFT-LCD) waste glasses using thermal treatments including glass-ceramic process and sintering process.
The excellent dielectric properties of TFT-LCD waste glasses are original from it highly SiO2 content. However, the sintering temperature of TFT-LCD waste glass powder is higher than LTCC (900 oC). Therefore, TFT-LCD waste glasses need an adjustment in composition to lower its sintering temperature. Moreover, a dielectric constant of lower than 9 and quality factor higher than 300 were also required to meet the cretira of LTCC. The composition of TFT-LCD waste glasses is similar with CaO–Al2O3–SiO2 (CAS) and CaO–B2O3–SiO2 (CBS) system. Both systems are generally used in the production of commercial LTCC.With the regard, CaCO3, CaF2 and B2CaO4 were added as adjusting agents to TFT-LCD waste glass to produce LTCC in CAS and CBS system.
The results indicated that the sintering temperature and dielectric properties of LTCC produced from composition-adjusted TFT-LCD waste glass were meet the creteria of commercial LTCC. In glass-ceramic process, the Ca ions weaken the net glass structure and lower the sintering temperature by acting as modifyin agent. In sintering process, the adding of B2CaO4 increased the quantities of liquid phases, which enhanced liquid sintering and the sintering temperature was reduced. The dielectric constant of LTCC depends mainly on its density and porosity. The dielectric constant of investigated CAS system is higher than CBS system due to the densification degree of CAS system is much higher. A reduction of quality factor can be observed with the increasing CaCO3 and B2CaO4 content. On the contrary, quality factor increased with the increasing addition of CaF2.
This phenomen can be attributed to the substitution of oxygen ions by fluoride ions in the Si-O structure of glass. A fine, homogenous microstructure in LTCC can be achieved via glass-cermaic process. Then, minor defeat in microstructure makes a higher quality factor of LTCC.
This study successful produced LTCC from composition-adjusted TFT-LCD waste glass, and the thermal and dielectric properties meet the creteria of commercial LTCC.


表目錄 VI
圖目錄 VII
第一章、前言 1
1.1研究緣起 1
1.2研究目的與研究項目 2
第二章、文獻回顧 3
2.1影像顯示產業廢棄物 3
2.2低溫共燒陶瓷的發展 6
2.3低溫共燒陶瓷的特性 9
2.4商用低溫共燒陶瓷 18
2.5低溫共燒陶瓷的製程 22
2.5.1玻璃陶瓷製程 23
2.5.2混燒製程 24
第三章、研究方法 25
3.1實驗材料 25
3.2實驗設備與分析儀器 26
3.3實驗方法 30
3.4研究步驟 33
第四章、結果與討論 36
4.1 TFT-LCD玻璃特性分析 36
4.1.1 燒結特性分析與熱膨脹分析 36
4.1.2 介電性質分析 37
4.1.3 成分分析 37
4.2 添加CaCO3製備CAS系LTCC 39
4.2.1添加CaCO3對燒結特性的影響 39
4.2.2添加CaCO3對介電性質的影響 46
4.2.3密度對介電性質的影響 50
4.2.4 CAS晶相對介電性質的影響 55
4.2.5添加CaCO3對熱膨脹係數的影響 58
4.2.6製程差異對介電性質之影響 59
4.2.7小結 62
4.3添加CaF2製備CAS系LTCC 63
4.3.1添加CaF2對燒結特性的影響 64
4.3.2添加CaF2對介電性質的影響 68
4.3.3密度對介電性質的影響 71
4.3.4 CAS晶相對介電性質的影響 74
4.3.5添加CaF 2對熱膨脹係數的影響 77
4.3.6製程差異對介電性質之影響 77
4.3.7小結 81
4.4添加CaB2O4製備CBS系LTCC 82
4.4.1添加CaB2O4對燒結特性的影響 82
4.4.2添加CaB2O4對介電性質的影響 85
4.4.3密度對介電性質的影響 89
4.4.4 CBS晶相對介電性質的影響 93
4.4.5添加CaB2O4對熱膨脹係數的影響 95
4.4.6製程差異對介電性質之影響 96
4.4.7小結 97
4.5 綜合討論 98
4.5.1 降低燒結溫度 98
4.5.2 優化介電性質 103
4.5.3 熱膨脹係數 107
4.5.4 產出LTCC材料之最適配比與熱處理條件 108
第五章、結論與建議 111
第六章、參考文獻 113


Chang, C. R., Kinetics and mathematical analyses of cofiring for an Ag-based low-temperature cofired ceramic package, Master thesis, National Tsing Hua University, Hsinchu, Taiwan, 1998

Chen, Y. C., Chen, K. C. and Chen, K. H., Effect of B2O3 additions and sintering temperature on the microwave dielectric properties of 0.7La(Mg0.5Sn0.5)O3 -0.3(Sr0.8Ca0.2)3Ti2O7 ceramics, Ferroelectrics Letters, vol. 38, pp. 59-68, 2011

Eberstein, M., Glitzky, C., Gemeinert, M., Rabe, T. and Schiller, W. A., Design of LTCC with High Thermal Expansion, International Journal of Application Ceramics Technology, vol. 6, pp. 1-8, 2009

Fan, C. S. and Li, K. C., Production of insulating glass ceramics from thin film transistor-liquid crystal display (TFT-LCD) waste glass and calcium fluoride sludge, Journal of Cleaner Production, vol.57, pp. 335-341, 2013

Gupta, T. K. and Jean, J. H., Principles of the development of a silica dielectric for microelectronics packaging, Journal of Material Research, vol. 11, pp. 243-263, 1996

Ha, J. Y., Choi, J. W., Kang, C.Y., Yoon, S. J., Choi, D. J. and Kim, H. J., Microwave dielectric properties of Ca[(Li1/3Nb2/3)1−x Tix]O3−δ ceramics with glass, Journal of Electroceramics, vol. 17, pp. 399–403, 2006

Hsiang, H. I. and Chung, S. H., Effects of B2O3 addition on the microstructure and microwave dielectric properties of La4Ba2Ti5O18, Journal of Alloys and Compounds, vol. 465, pp. 356-360, 2008

Huang, N. and Wang, J., A TGA-FTIR study on the effect of CaCO3 on the thermal degradation of EBA copolymer, Journal of Analytical and Applied Pyrolysis, vol. 84, pp. 124-130, 2009

Huang, C. L. and Chen, Y. C., Influence of V2O5 additions to NdAlO3 ceramics on sintering temperature and microwave dielectric properties, Journal of the European Ceramic Society, vol. 23, pp. 167–173, 2003

Kawashima, S., Nishida, M., Ueda, I. and Ouchi, H., Ba(Zn1/3Ta2/3)O3 ceramics with low dielectric losses at microwave frequencies, Journal of American Ceramic Society, vol. 66(6), pp. 421-423, 1983

Khater, G.A., Influence of Cr2O3, LiF, CaF2 and TiO2 nucleants on the crystallization behavior and microstructure of glass-ceramics based on blast-furnace slag, Ceramic International, vol. 37, pp. 2193-2199, 2011

Kim J., Hwang, S. and Sung, W, Thermal and dielectric properties of glass-ceramics sintered based on diopside and anorthite composition, Journal of Electrceramics, vol. 23, pp. 209-213, 2009

Lin, K. L., Use of thin film transistor liquid crystal display (TFT-LCD) waste glass in the production of ceramic tiles, Journal of Hazardous Material, vol. 148, pp. 91-97, 2007

Lo, C. L. and Duh, J. G., Low temperature sintering and crystallization behaviour of low loss anorthite-based glass-ceramics, Journal of Materials Science, vol. 38, pp. 693-698, 2003

Lo, C. L. and Duh, J. G. Low-temperature sintering and microwave dielectric properties of anorthite-based glass-ceramics, Journal of American Society, vol 85(9), pp. 2230-2235, 2002

Mattox, D. M., Gurkovich, S. R., Olenick, J. A. and Mason, K. M., Low dielectric constant, alumina-compatible, co-fired multilayer substrate, Ceramic Engineering and Science Proceedings, vol. 9, pp. 1567-1578, 1988

Naresh, P., Naga Raju, G., Ravi Kumar, V., Piasecki, M., Kiytyk, I.V. and Veeraiah, N., Optical and dielectric features of zinc oxy fluoro borate glass ceramics with TiO2 as crystallizing agent, vol. 40, pp. 2249-2260, 2014

Niwa, K., Kamehara, N., Yokoyama, H., Yokouchi, K. and Kurihara, K., Multilayer ceramic circuit board with copper conductor, Advanced in Ceramics, vol. 19, pp. 41-47, 1986

Ok, S., Heung, S., Soo, K., Guk, J. and Kim, S., Low-temperature preparation and microwave dielectric properties of ZBS glass-Al2O3 composite, Ceramical International, vol. 35, pp. 1271-1275, 2009

Schwartz, B., Microelectronics Packaging: Ⅱ, Journal of American Society Bulletin, vol. 63(4), pp. 577-581, 1984

Sebastian, M. T., Low loss dielectric materials for LTCC applications: a review, International Materials Reviews, vol.53 (2), pp. 57-90, 2008

Strnad, Z., 1986. Glass-ceramic materials: liquid phase separation, nucleation, and crystallization in glasses. Elsevier, Amsterdam-Oxford-New York-Tokyo.

Tummala, R. R., Ceramics and glass-ceramic packaging in the 1990s, Journal of American Ceramic Society, vol. 74(5), pp. 895-908, 1991

Valant, M. and Suvorov, D., Microstructural phenomena in low-firing ceramics, Materials Chemistry and Physics, vol. 79, pp. 104-110, 2003

Wang, R., Zhou, J. and Zhao, H., Oxyfluoride glass-silica ceramic composite for low temperature co-fired ceramics. Journal of the European Ceramic Society, vol. 28(15), pp. 2877-2881, 2008

Wang, R., Zhou, J. and Huang, X. G., Oxyfluoride glassceramic composites for low temperature co-fired ceramic substrate, Ferroelectrics, vol. 388, pp. 31-35, 2009a

Wang, R., Zhou, J., and Li, B., CaF2-AlF3-SiO2 glass-ceramic with low dielectric constant for LTCC application, Journal of Alloys and Compounds, vol. 490, pp. 204-207, 2010

Wang, R., Zhou, J. and Li, B., Study of the properties of CaF2-AlF3-SiO2 oxyfluoride glass-ceramic system, Rare Metal Materials and Engineering, vol. 38, pp.1117-1119, 2009b

Wang, S. F., Chiang, C. C., Wang, Y. R. and Hsu, Y. F., Effects of additives on the densification and microwave dielectric properties of binary CaO-B2O3-SiO2 Glass, Japanese Journal of Applied Physis, vol. 49, pp 021101-1-021101-3, 2010

Xia, G., He, L. and Yang, D., Preparation and characterization of CaO-Al2O3-SiO2 glass/fused silica composites for LTCC application, Journal of Alloys and Compounds, vol. 531, pp 70-76, 2012

Yoshihiko I., Multilayered low temperature cofired ceramics (LTCC) technology, Germany: Springer, 2005.

Zhou, J., Towards rational design of low-temperature co-fired ceramic (LTCC) materials, Journal of Advanced Ceramics, vol. 1(2), pp. 89-99, 2012

Zhu, H., Zhou, H., Liu, M., Wei, P., Ning, G., Low temperature sintering and properties of CaO-B2O3-SiO2 system glass ceramics for LTCC applications, Journal of Alloys and Compounds, vol. 482, pp 272-275, 2009

行政院環保署,行政院環保署─事業廢棄物申報及管理資訊系統之統計,2013

林東宏、李公哲,TFT-LCD玻璃混合轉爐石爐渣熱處理資材化製成絕緣玻璃陶瓷之研究,國立台灣大學環境工程學研究所碩士論文,2010

范振軒,李公哲,TFT-LCD玻璃/氟化鈣污泥熱處理資材化為絕緣玻璃陶瓷之研究,國立台灣大學環境工程學研究所碩士論文,2010

陳炫妤,李公哲,TFT-LCD玻璃添加調質劑形成MAS系玻璃陶瓷之研究,國立台灣大學環境工程學研究所碩士論文,2011

高瑛紜,「液晶面板製造業廢棄物資源化現況評析」,綠基會通訊,頁6-9,2008

連智偉,段維新,氧化鋁對硼矽酸玻璃燒結行為與介電性質的影響,國立台灣大學材料科學與工程學研究所碩士論文,2002

黃智揚,李公哲,TFT-LCD玻璃混合轉爐石資材化燒製輕質骨材之發泡機制研究,國立台灣大學環境工程學研究所碩士論文,2013


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top