跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 17:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊斾蓉
研究生(外文):Pei-Jung Yang
論文名稱:廢棄活性碳微波再生及其吸附效率之研究
論文名稱(外文):Regeneration and adsorption efficiency of waste activated carbon by microwave treatment
指導教授:駱尚廉駱尚廉引用關係
口試委員:劉雅瑄林進榮
口試日期:2015-06-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:94
中文關鍵詞:活性碳微波再生吸附RB19
外文關鍵詞:Activated CarbonsMicrowave RegenerationRB19 adsorption
相關次數:
  • 被引用被引用:0
  • 點閱點閱:660
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在現今工業快速發展下,活性碳已被廣泛地使用在廢污水處理、水再生等流程中,隨著活性碳的使用日益增加,其經費成本與廢棄量亦趨增加。因此,活性碳再生被視為處理流程中降低費用的一個重要項目,相較於傳統的許多活性碳再生方法中,微波再生具有處理時間短、效率更高、花費更低、活性碳重損失更低、能量耗損更小、以及不具二次污染等優點。
本研究目標之廢棄活性碳為金門水處理廠所用之二次再生活性碳,使用微波處理作為活性碳再生方法,操作參數包含微波時間、微波功率、樣品含水量等,探討再生後活性碳之升溫變化、碘值吸附能力等物理及化學性質。分析方法包含使用XRD分析再生活性碳之繞射強度,以SEM觀察再生前後結構改變,以BET探討再生活性碳之孔隙及比表面積,並使用再生活性碳吸附RB19染料以進行再生後之吸附實驗。
金門水廠原廢棄活性碳之碘值為450 mg/gAC,在20分鐘微波時間及微波功率100 W至750 W下,再生的顆粒活性碳(RGAC)之碘值可以到達800 mg/gAC,而粉狀活性碳(PAC)在微波時間10分鐘、微波功率450 W下,再生活性碳(RPAC)可以達到碘值1050 mg/gAC,然而,再生活性碳之碘值在微波功率大於850W下,因活性碳結構之損壞而有顯著下降。使用微波再生廢棄活性碳除了有極佳的再生能力、吸附率約為原廢棄活性碳之兩倍以外,並能有效地降低金門水處理廠之花費,因此,研究結果認為微波再生處理流程具有極佳的潛力作為廢棄活性碳再生之流程。


Activated carbons (AC) have been used widely in the water and wastewater treatment and water reclamation plant. Since the benefit/cost of AC has been considered, the regeneration of AC has played an important role both in the treatment process and the cost reducing. Comparing to traditional regeneration methods, the advantages of microwave radiation process include shorter regeneration time, better efficiency, lower cost, less carbon loss, lower energy consumption, and without secondary pollution and specificity of the adsorbate. The objectives of this study were to regenerate the waste AC, which have been regenerated twice, sampled from water purification plant in Kinmen. The microwave radiation process was used as the regeneration method. Physical and chemical characteristics of regenerated AC were investigated. The diffraction intensity of regenerated AC was determined by XRD, structure changes were observed by SEM, and the specific surface area was analyzed by BET. The adsorption efficiencies of waste and regenerated AC under different operation parameters, such as radiation power, adsorption time, and temperature were investigated by iodine number. The iodine number of waste AC in Kinmen is approximately 450mg/gAC. With 20 mins radiation and power of 100 to 750W, the iodine number of regeneration GAC can all reach more than 800mg/gAC and the regeneration PAC can all reach more than 1050mg/gAC with 10 mins radiation and power of 450W.The iodine number will decrease with power higher than 850W resulted from carbon structure ruined. With using microwave radiation, not only the adsorption efficiency of regeneration AC is two times better than that of original waste AC, but also reducing the AC costs in Kinmenwater purification plant. Therefore, the microwave radiation process hasgreat potential for regeneration of waste AC.

口試委員審定書 I
致謝 I
中文摘要 III
英文摘要 IV
圖目錄 VIII
表目錄 XI
第一章緒論 12
1.1前言 12
1.2研究目的 13
1.3 研究內容 13
第二章文獻回顧 14
2.1水處理中活性碳應用 14
2.1.1活性碳基本性質 15
2.1.2活性碳製備 16
2.2活性碳再生處理技術 17
2.2.1加熱再生法 17
2.2.2化學再生法 18
2.2.3生物再生法 18
2.2.4電化學再生法 18
2.2.5超聲波再生法 18
2.2.6濕式氧化再生法 19
2.2.7超臨界流體再生法 19
2.2.8微波輻射再生法 19
2.3微波再生處理技術 19
2.3活性碳吸附理論及模式 21
第三章材料與方法 23
3.1 研究架構 23
3.2實驗試劑 25
3.3活性碳前處理 25
3.4實驗設備與方法 26
3.4.1單模式聚焦微波加熱爐 27
3.4.2分光光度計 31
3.4.3高速離心機 32
3.4.4活性碳碘值標準測定法 32
3.4.5粉末繞射分析儀 33
3.4.6掃描式電子顯微鏡 33
3.4.7比表面積及奈米孔洞分析儀 34
3.5廢棄活性碳 34
第四章 結果與討論 36
4.1微波輻射加熱實驗 36
4.1.1背景實驗 36
4.1.2微波功率對碘值影響 39
4.1.3微波升溫趨勢 46
4.1.4含水量對碘值影響 51
4.1.5微波時間對碘值影響 57
4.2反應性染料吸附 59
4.3 BET分析 63
4.4 XRD分析 66
4.5 掃描式電子顯微鏡分析(SEM) 67
4.6 穿透式電子顯微鏡分析(TEM) 70
4.7 元素分析(ELEMENTAL ANALYSIS, EA) 71
4.8 X光電子能譜分析(X-RAY PHOTOELECTRON SPECTROSCOPY, XPS) 72
第五章 結論與建議 80
5.1結論 80
5.2建議 81
參考文獻 82
附錄 86


[1] Derbyshire, F.,Jagtoyen,M.,Andrews,R.,Rao,A.,Martin-Gullon,I., Grulke,E.Carbon materials in environmental applications, 27, 1-66 (2001)
[2]Xiao,H.Y.,Zhang, Yu. F., Hui, S. Z.,Technology development and application of activated carbon fibers.Industrial Technology Research Institute(2013)
[3] Crini, G., Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technology 97, 1061–1085 (2006)
[4] Chuah, T.G., Jumasiah, A., Azni, I., Katayon, S., Thomas Choong, S.Y., Rice husk as a potentially low-cost biosorbent for heavy metaland dye removal: an overview. Desalination 175, 305–316 (2005)
[5] Lo´pezde L., Sa´nchez, M., Macias-Garcia, A., Dia´z-Dı´ez, M.A.,Cuerda-Correa, E.M., Gan˜a´n-Go´mez, J., Nadal-Gisbert, A.,Preparation of activated carbons previously treated with hydrogenperoxide: study of their porous texture. Applied Surface Science, 252,5984-5987. (2006)
[6]Zhang, T., Walawender, W.P., Fan, L.T., Fan, M., Daugaard, D., Brown,R.C.,Preparation of activated carbon from forest andagricultural residues through CO2 activation. Chemical EngineeringJournal 105, 53–59. (2004)
[7] Dı´az-Dı´ez, M.A., Go´mez-Serrano, V., Ferna´ndez Gonza´lez, C., CuerdaCorrea,E.M., Macı´as-Garcı´a, A., Porous texture of activatedcarbons prepared by phosphoric acid activation of woods. AppliedSurface Science 238, 309-313. (2004)
[8] Zabaniotou, A.A., Stavropoulos, G., Pyrolysis of used automobiletires and residual char utilization. Journal of Analytical and AppliedPyrolysis 70, 711–722. (2003)
[9] Moreno-Castilla,C. and Rivera-Utrilla,J,Carbon Materialsas Adsorbents forthe Removal ofPollutants from theAqueous Phase. (2001)

[10] Shukla, A., Zhang, Y.-H., Dubey, P., Margrave, J.L., Shukla, S.S.,The role of sawdust in the removal of unwanted materials from water.Journal of Hazardous Materials 95, 137–152. (2002)
[11]Rahman, I.A., Saad, B., Shaidan, S., Sya Rizal, E.S., Adsorptioncharacteristics of malachite green on activated carbon derived fromrice husks produced by chemical–thermal process. BioresourceTechnology 96, 1578–1583. (2005)
[12] Valix, M., Cheung, W.H., McKay, G., Preparation of activatedcarbon using low temperature carbonisation and physical activation ofhigh ash raw bagasse for acid dye adsorption. Chemosphere 56,493–501. (2004)
[13] Khezami, L., Capart, R., Removal of chromium(VI) from aqueoussolution by activated carbons: kinetic and equilibrium studies. Journalof Hazardous Materials 123, 223–231.(2005)
[14] Bansode, R.R., Losso, J.N., Marshall, W.E., Rao, R.M., Portier, R.J.,Adsorption of volatile organic compounds by pecan shell- and almond shell-based granular activated carbons. Bioresource Technology90, 175–184. (2003)
[15]Bac-aoui, A., Dahbi, A., Yaacoubi, A., Bennouna, C., Maldonado-Ho´ dar,F.J., Rivera-Utrilla, J., Carrasco-Marı´n, F., Moreno-Castilla, C.,Experimental design to optimize preparation of activated carbons foruse in water treatment.Environmental Science and Technology 36,3844–3849. (2002)
[16]Tseng, L. Activated carbon manufacturing technology and its application. Industry Survey & Technology127, 84-97. (1998)
[17]boehm,H. P., Some aspects of the surface chemistry of carbon blacks and other carbons. Institut fi.ir Anorganische Chemie der University Miinchen, Meiserstrasse 1,80333 Miinchen, Germany. (January 1994)

[18]Esfandiari, A., Kaghazchi, T., Soleimani, M. Preparation and evaluation of activated carbons obtained by physicalactivation ofpolyethyleneterephthalate (PET) wastes. Journal of the Taiwan Institute of Chemical Engineers 43, 631-637. (2012)
[19]Caturla, F.,Molina-sabio, M.,Rodriguez-reinoso, F. Preparationof activatedcarbonby chemicalactivationwith ZnCl2. Carbon.,29(7),999-1007. (1991)
[20]Shouxin, L., Yan, W., Wanchao, Zheng. Progress in activated carbon regeneration. Jornal of Northeast Forestry University, 29(3), 61-63.(2001)
[21]Kaneko, K., Ishii, C., Ruike, M., Kuwabara, H. Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons. Carbon., 30(7),1075-1088. (1992)
[22]Jun-li, L., Ke- long, G. Effects of high temperature treatment on activated carbon pore structure.Chemistry and Industry of Forest Products, 19(3), 37-40. (1999)
[23]Pei-Jen L., Hsin-Chieh L., Wen-Te Y., Jia-Ming C., Chemical regeneration of activated carbon used for dye adsorption.Journal of the Taiwan Institute of Chemical Engineers, 42, 305-311. (2011)
[24]Jian, Z., San-fan, W., Xia, C.Study on ultrasonic granular activated carbon regeneration, 32(4), 143-147. (2013)
[25]Da-fang, F.,Zong-bo, Z., Peng, C.Regeneration of activated carbon bymicrowave irradiation.China Water & Wastewater, 13(5),7-9. (1997)
[26] Fang C.S.Microwave regeneration of spent powder activated carbon.chemical engineering communications, (147),17-27.(1996)
[27] Alonso L., Diamy A., Legrand J., Fraissard J. Sorption of volatile organic compounds on zeolites with microwave irradiation. Studies in Surface Science and Catalysis, 154(2), 1866-1871. (2004)
[28] Menéndez J A., Menéndez E M., García A. Thermal Treatment of Activate Carbons: a comparison between microwave and electrical heating. Journal of Microwave Power and Electromagnetic Energy, 34(3), 137-142. (1999)
[29] F. Garbassi, M. Morra, E. Occhiello, Polymer Surfaces from Physics to Technology, John Wiley & Sons, 1998


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top