跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 04:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳楷傑
研究生(外文):Kai-Jie Chen
論文名稱:奈米矽片銀改質濾材控制室內生物氣膠之研究
論文名稱(外文):Control of Bioaerosols by Nanosilver Particles/Clay Modified Filter in Indoor Environment
指導教授:李慧梅李慧梅引用關係
口試委員:張靜文黃小林楊心豪
口試日期:2015-07-03
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:136
中文關鍵詞:室內空氣品質生物氣膠奈米矽片銀過濾抗菌
外文關鍵詞:indoor air qualitybioaerosolAgNP/Clayfiltrationantimicrobial activity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:97
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生物氣膠為室內空氣品質控制所關注的項目之一,於室內HVAC系統結合過濾裝置之方式目前普遍的生物氣膠控制技術。本研究嘗試利用奈米矽片銀高抗菌性且低生物毒性之特性,將其批覆於濾材上形成一抗菌濾材,藉此使生物氣膠能迅速失活。四種濾材(未改質、銀濃度12.6 ppm、31.5 ppm與63 ppm之奈米矽片銀改質濾材)連續過濾測試結果,經改質後濾材因孔隙率下降,提高E.coli氣膠被攔截下來的機率,過濾效率在RH=30%條件提升13.7~19.7%,在RH=70%條件則提升14~19.9%,yeast則濾材改質前後過濾效率並無明顯差別。不同奈米矽片銀改質濃度濾材(銀濃度12.6 ppm、31.5 ppm與63 ppm)過濾效率統計分析結果並無顯著差異。過濾後濾材上微生物存活情形,結果顯示濾材經奈米矽片銀改質濃度越高,針對生物氣膠的抗菌表現也就越佳。
HVAC模擬系統過濾測試,在RH=30%環境條件下,E.coli與yeast於HVAC模擬系統裝設濾材後,艙室中存活氣膠量無明顯降低跡象,可能為裝設濾材後產生過濾壓差,使HVAC系統回流率不佳,導致生物氣膠難以經由HVAC過濾裝置所去除。在RH=70%條件下,裝設濾材後艙室內E.coli衰減率增加1%~10.8%,yeast衰減率提升17.7%~31%,未改質濾材與奈米矽片銀改質濾材結果差異不大。經HVAC系統過濾後,E.coli於濾材上的存活數量十分稀少,yeast於未改質濾材存活數量遠高於奈米矽片銀改質濾材,表示改質濾材具有抗菌效能。
最後針對四處公共場所(教室、圖書館、餐飲區、醫院候診區)進行實地測試,奈米矽片銀改質濾材細菌和真菌過濾效率分別為98.9%與98.7%以上。同時針對教室環境過濾後微生物存活測試,未改質濾材放置12小時後,真、細菌存活率分別為290%與76.5%,而改質濾材在12小時放置後真、細菌存活率則分別僅有50%與25%,顯示實場應用下奈米矽片銀改質濾材具有良好過濾和抗菌效能。


Bioaerosols is one of the concerning topics associated with indoor air quality control. The combination of indoor HVAC system with filtration device is the most common bioaerosol control technology. In order to inactivate bioaerosols, clay-supported silver nanohybrids (AgNP/Clay) could be immobilized on the filter to form an antimicrobial filter by utilizing its characteristics of high antimicrobial activity and low cytotoxicity.
According to the results of continuous flow filtration test for four types of filers(un-modified filter, AgNP/Clay modified filter with 12.6ppm, 31.5ppm, and 63ppm Ag), the filter efficiency for E.coli was increased 13.7~19.9% and 14.0~19.9% due to the decreased in porosity at RH=30% and RH=70%, respectively. However, there was no significant difference between un-modified and modified filter for yeast could be observed. According to the results of statistical analysis of modified filters with different AgNP/Clay concentrations, the P-value was greater than 0.05, which indicated that there was no significant difference between filtration efficiency. By observing the survival of microorganism on filter, the results showed that modified filter with higher concentration of AgNP/Clay had better antimicrobial performance.
In HVAC filter testing simulation system, both the survival number of E.coli and yeast had no significant decrease after the installation of filter under environmental condition of RH=30%. Bioaerosols had difficulty to remove from HVAC system due to the differential pressure produced from the installation of filter, which result in deficiency of recirculation rate of HVAC system. Under environmental condition of RH=70%, the reduction rate of E.coli and yeast increased 1.0~10.8% and 17.7~31.0%, respectively. However, there were no remarkable difference between un-modified and AgNP/Clay modified filter. It could be observed that E.coli were rare to survived on filter after the filtration of HVAC system while survival rate of yeast on un-modified filter was much higher than AgNP/Clay modified filter. It indicates that filter modified with AgNP/Clay has antimicrobial effect.
Based on the test of on-site bioaersols at four public locations (classroom, library, dining hall, and out-patient hall), the Ag/NP/Clay modified filter had filtration efficiencies of 98.9% and 98.7% for bacteria and fungi, respectively. Furthermore, according to the results of survival examination of microorganism on filter in classroom with the duration of 12 hours, the survival rates for bacteria and fungi were 290% and 76.5% for un-modified filter while 50% and 25% for AgNP/Clay modified filter, respectively. It could be summarized that AgNP/Clay modified filter has a positive filtration and antimicrobial performance with on-site application.


謝誌 I
摘要 II
Abstract III
目錄 V
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
1-3 研究內容與方法 2
1-4 研究架構 3
第二章 文獻回顧 4
2-1 生物氣膠 4
2-1-1 生物氣膠定義及種類 4
2-1-1-1 細菌氣膠 7
2-1-1-2 真菌氣膠 8
2-1-2 室內生物氣膠來源 9
2-1-3 室內生物氣膠特性及濃度變化因子 10
2-1-4 生物氣膠對人體健康的影響 12
2-1-5 各國室內生物氣膠濃度之規範 14
2-1-6 生物氣膠之採樣與監測技術 16
2-1-6-1生物氣膠採樣技術 16
2-1-6-2生物氣膠定性與定量 18
2-2 室內生物氣膠清淨技術 21
2-2-1 空氣負離子淨化 21
2-2-2 紫外光照射 22
2-2-3 光觸媒氧化 23
2-2-4 臭氧殺菌 24
2-2-5 通風稀釋 24
2-2-6 靜電收集 25
2-2-7 濾材過濾 25
2-3 奈米銀、奈米矽片與奈米矽片銀 27
2-3-1 奈米銀 27
2-3-2 奈米銀在環境與生物介質中的轉換 28
2-3-3 奈米銀生物作用機制及毒性表現 30
2-3-4 奈米矽片 32
2-3-5 奈米矽片銀 34
第三章 研究方法 36
3-1 研究流程 36
3-2 改質濾材前置作業 37
3-2-1 奈米矽片銀改質濾材製備 37
3-2-2 濾材中銀濃度定量分析 38
3-3 奈米矽片銀改質濾材表面構造觀察 39
3-4 微型艙濾材測試實驗 40
3-4-1 測試之生物氣膠培養與懸浮液製備 40
3-4-1-1 菌種保存 40
3-4-1-2 菌種活化 41
3-4-1-3 實驗懸浮液之製備 42
3-4-1-4 生物氣膠分析方法 42
3-4-2 實驗系統 43
3-4-2-1 氣流供應單元 43
3-4-2-2 生物氣膠產生單元 43
3-4-2-3 相對濕度控制單元 45
3-4-2-4 艙室濾材過濾單元 45
3-4-2-5 生物氣膠採樣單元 46
3-4-3 實驗步驟與樣品分析 47
3-4-3-1 生物氣膠過濾效率測試 47
3-4-3-2 濾材上微生物之存活率測試 48
3-5 室內環境HVAC模擬系統 49
3-5-1 實驗系統 49
3-5-2 實驗步驟與樣品分析 51
3-5-2-1 艙室生物氣膠衰減速率測試 51
3-5-2-2 濾材上微生物之存活率測試 52
3-6 實場濾材測試 53
3-6-1 生物氣膠之採樣與培養方式 53
3-6-2 場址選擇 53
3-6-3 實驗系統 54
3-7 實驗相關參數與計算方法 55
第四章 結果與討論 57
4-1 奈米矽片銀濾材表面構造觀察 57
4-2 微型艙濾材測試實驗 65
4-2-1 不同改質濃度濾材之過濾效率 65
4-2-2 不同改質濃度濾材之微生物存活率 74
4-2-3 最適奈米矽片銀改質濃度之選擇 83
4-3室內環境HVAC模擬系統 84
4-3-1 系統測試箱生物氣膠衰減速率 84
4-3-2 微生物於濾材改質前後之存活表現 88
4-4濾材實場測試 91
第五章 結論與建議 96
5-1 結論 96
5-2 建議 99
參考文獻 100
附錄A 微型艙濾材測試 – 微生物存活率迴歸分析 117
附錄B 實驗原始數據 126
附錄C 口試委員提問與建議 133

1.Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA, "Synthesis and applications of silver nanoparticles. " Arab J Chem 3:135–140 (2010).
2.Ahamed, M., M. Karns, M. Goodson, J. Rowe, S. M. Hussain, J. J. Schlager and Y. Hong., "DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells." Toxicology and Applied Pharmacology 233(3): 404-410 (2008).
3.Ahangaran MG, Firouzabadi MSS, Firouzabadi MS, " Evaluation of antiseptic role of one nanosilver based drug as a new therapeutic method for treatment of bumblefoot in pheasant (Phasianus colchicus). " Glob Vet 8:73–75 (2008).
4.Ahmadi, F., "Impact of different levels of silver nanoparticles (Ag-NPs) on performance, oxidative enzymes and blood parameters in broiler chicks." Pakistan Veterinary Journal 32(3): 325-328 (2012).
5.An, H. R., G. Mainelis and L. White.,"Development and calibration of real-time PCR for quantification of airborne microorganisms in air samples." Atmospheric Environment 40(40): 7924-7939 (2006).
6.AshaRani, P. V., M. P. Hande and S. Valiyaveettil., "Anti-proliferative activity of silver nanoparticles." Bmc Cell Biology 10: 14 (2009).
7.AshaRani, P. V., G. L. K. Mun, M. P. Hande and S. Valiyaveettil., "Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells." Acs Nano 3(2): 279-290 (2009).
8.Awasthi, K., A. Awasthi, N. Kumar, P. Roy, K. Awasthi and P. J. John., "Silver nanoparticle induced cytotoxicity, oxidative stress, and DNA damage in CHO cells." Journal of Nanoparticle Research 15(9): 1-12 (2013).
9.Bari, E., H. R. Taghiyari, O. Schmidt, A. Ghorbani and H. Aghababaei., "Effects of nano-clay on biological resistance of wood-plastic composite against five wood-deteriorating fungi." Maderas. Ciencia y tecnología 17(1): 205-212 (2015).


10.Bartlett, K.H., Kennedy, S.M., Brauer, M., Van Netten, C., Dill, B., "Evaluation and a predictive model of airborne fungal concentrations in school classrooms. " Annals of Occupational Hygiene 48, 547–554 (2004).
11.Bartlett, K. H., S. M. Kennedy, M. Brauer, C. van Netten and B. Dill., "Evaluation and determinants of airborne bacterial concentrations in school classrooms." Journal of Occupational and Environmental Hygiene 1(10): 639-647 (2004).
12.Batterman, S. A. and H. Burge., "HVAC systems as emission sources affecting indoor air quality: a critical review," HVAC&R Research, 1(1), 61-78 (1995).
13.Baxter, C.G., Jones, A.M., Webb, K., Denning, D.W., "Homogenisation of cystic fibrosis sputum by sonication –– An essential step for Aspergillus PCR." Journal of Microbiological Methods 85 (1), 75–81 (2011).
14.Bazaka, K., Jacob, M.V., Crawford, R.J., Ivanova, E.P., "Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment." Acta Biomaterialia 7 (5), 2015–2028 (2011).
15.Bonsak J, Mayandi J, Thgersen A, Marstein ES, Mahalingam U., "Chemical synthesis of silver nanoparticles for solar cell applications. " Phys Status Solidi C 8:924–927 (2011).
16.Braydich-Stolle, L. K., B. Lucas, A. Schrand, R. C. Murdock, T. Lee, J. J. Schlager, S. M. Hussain and M. C. Hofmann., "Silver Nanoparticles Disrupt GDNF/Fyn kinase Signaling in Spermatogonial Stem Cells." Toxicological Sciences 116(2): 577-589 (2010).
17.Breda, L., Nozzi, M., De Sanctis, S., Chiarelli, F., "Laboratory tests in the diagnosis and follow-up of pediatric rheumatic diseases: an update. " Seminars in Arthritis and Rheumatism 40 (1), 53–72 (2010).
18.Bressan, E., L. Ferroni, C. Gardin, C. Rigo, M. Stocchero, V. Vindigni, W. Cairns and B. Zavan., "Silver nanoparticles and mitochondrial interaction." International Journal of Dentistry (2013).
19.Brodie, E. L., T. Z. DeSantis, J. P. M. Parker, I. X. Zubietta, Y. M. Piceno and G. L. Andersen., "Urban aerosols harbor diverse and dynamic bacterial populations." Proceedings of the National Academy of Sciences of the United States of America 104(1): 299-304 (2007).

20.Burger, H., "Bioaerosols: Prevalence and health effects in the indoor environment." Journal of Allergy and Clinical Immunology 86(5): 687-701 (1990).
21.Carlson, C., S. M. Hussain, A. M. Schrand, L. K. Braydich-Stolle, K. L. Hess, R. L. Jones and J. J. Schlager., "Unique Cellular Interaction of Silver Nanoparticles: Size-Dependent Generation of Reactive Oxygen Species." Journal of Physical Chemistry B 112(43): 13608-13619 (2008).
22.Chang, C. W., S. Y. Li, S. H. Huang, C. K. Huang, Y. Y. Chen and C. C. Chen., "Effects of ultraviolet germicidal irradiation and swirling motion on airborne Staphylococcus aureus, Pseudomonas aeruginosa and Legionella pneumophila under various relative humidities." Indoor Air 23(1): 74-84 (2013).
23.Cheng, X. L., W. Q. Zhang, Y. L. Ji, J. Meng, H. Guo, J. Liu, X. C. Wu and H. Y. Xu., "Revealing silver cytotoxicity using Au nanorods/Ag shell nanostructures: disrupting cell membrane and causing apoptosis through oxidative damage." Rsc Advances 3(7): 2296-2305 (2013).
24.Cheng L, Zhang K, Weir MD, Liu H, Zhou X, Xu HHK., "Effects of antibacterial primers with quaternary ammonium and nano-silver on Streptococcus mutans impregnated in human dentin blocks. " Dent Mater 29:462–472 (2013).
25.Chen, L.Y., Jeng, F.T., Chen, C.C., Hsiao, T.C., "Hygroscopic behavior of a atmospheric aerosol in Taipei. " Atmospheric Environment 37, 2069–2075 (2003).
26.Chiao, S. H., S. H. Lin, C. I. Shen, J. W. Liao, I. J. Bau, J. C. Wei, L. P. Tseng, S. H. Hsu, P. S. Lai, S. Z. Lin, J. J. Lin and H. L. Su., "Efficacy and safety of nanohybrids comprising silver nanoparticles and silicate clay for controlling Salmonella infection." International Journal of Nanomedicine 7: 2421-2432 (2012).
27.Choi, O., T. E. Clevenger, B. Deng, R. Y. Surampalli, L. Ross Jr and Z. Hu., "Role of sulfide and ligand strength in controlling nanosilver toxicity." Water Research 43(7): 1879-1886 (2009).
28.Chu, C. C., M. L. Chiang, C. M. Tsai and J. J. Lin., "Exfoliation of montmorillonite clay by Mannich polyamines with multiple quaternary salts." Macromolecules 38(15): 6240-6243 (2005).


29.Chuaybamroong, P., R. Chotigawin, S. Supothina, P. Sribenjalux, S. Larpkiattaworn and C. Y. Wu., "Efficacy of photocatalytic HEPA filter on microorganism removal." Indoor Air 20(3): 246-254 (2010).
30.Chuaybamroong, P., C. Thunyasirinon, S. Supothina, P. Sribenjalux and C. Y. Wu., "Performance of photocatalytic lamps on reduction of culturable airborne microorganism concentration." Chemosphere 83(5): 730-735 (2011).
31.D. VanOsdell, K.K. Foarde, "Defining the Effectiveness of UV Lamps Installed in Circulating Air Ductwork" ARTI-21CR/610-40030-01 (2002).
32.Daisey, J. M., W. J. Angell and M. G. Apte., "Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information." Indoor Air 13(1): 53-64 (2003).
33.Despres, V. R., J. A. Huffman, S. M. Burrows, C. Hoose, A. S. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andreae, U. Poschl and R. Jaenicke., "Primary biological aerosol particles in the atmosphere: a review." Tellus Series B-Chemical and Physical Meteorology 64: 58 (2012).
34.Dungan, R. and A. Leytem., "Qualitative and quantitative methodologies for determination of airborne microorganisms at concentrated animal-feeding operations." World Journal of Microbiology and Biotechnology 25(9): 1505-1518 (2009).
35.Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MY., "Interaction of silver nanoparticles with HIV-1. " J Nanobiotechnol (2005). doi:10.1186/1477-3155-3-6.
36.Engelhart, S., Glasmacher, A., Simon, A., Exner, M., "Air sampling of Aspergillus fumigatus and other thermotolerant fungi: Comparative performance of the Sartorius MD8 airport and the Merck MAS-100 portable bioaerosol sampler. " International Journal of Hygiene and Environmental Health 210 (6), 733–739 (2007).
37.Eninger, R.M., Adhikari, A., Reponen, T. and Grinshpun, S.A., "Differentiating between Physical and Viable Penetrations When Challenging Respirator Filters with Bioaerosols." Clean 36: 615–621 (2008).


38.Fauss E., "The silver nanotechnology commercial inventory. University of Virginia."(2008)(http://www.nanotechproject.org/process/assets/files/6718/fauss_final.pdf. Accessed 02 May 2014).
39.Fiegel, J., R. Clarke and D. A. Edwards., "Airborne infectious disease and the suppression of pulmonary bioaerosols." Drug Discovery Today 11(1–2): 51-57 (2006).
40.Fletcher, L. A., L. F. Gaunt, C. B. Beggs, S. J. Shepherd, P. A. Sleigh, C. J. Noakes and K. G. Kerr., "Bactericidal action of positive and negative ions in air." Bmc Microbiology 7: 9 (2007).
41.Frankel, M., G. Beko, M. Timm, S. Gustavsen, E. W. Hansen and A. M. Madsen., "Seasonal Variations of Indoor Microbial Exposures and Their Relation to Temperature, Relative Humidity, and Air Exchange Rate." Applied and Environmental Microbiology 78: 8289-8297 (2012).
42.Glover, R. D., J. M. Miller and J. E. Hutchison., "Generation of Metal Nanoparticles from Silver and Copper Objects: Nanoparticle Dynamics on Surfaces and Potential Sources of Nanoparticles in the Environment." Acs Nano 5(11): 8950-8957 (2011).
43.Goh, I., J. P. Obbard, S. Viswanathan and Y. Huang., "Airborne bacteria and fungal spores in the indoor environment - A case study in Singapore." Acta Biotechnologica 20(1): 67-73 (2000).
44.Gopinath, P., S. K. Gogoi, P. Sanpui, A. Paul, A. Chattopadhyay and S. S. Ghosh., "Signaling gene cascade in silver nanoparticle induced apoptosis." Colloids and Surfaces B: Biointerfaces 77(2): 240-245 (2010).
45.Gralton, J., Tovey, E., McLaws, M.L., Rawlinson, W.D., "The role of particle size in aerosolised pathogen transmission: a review." Journal of Infection 62 (1), 1–13 (2011).
46.Grinshpun, S. A., A. Adhikari, T. Honda, K. Y. Kim, M. Toivola, K. S. R. Rao and T. Reponen., "Control of aerosol contaminants in indoor air: Combining the particle concentration reduction with microbial inactivation." Environmental Science & Technology 41(2): 606-612 (2007).


47.Haase, A., S. Rott, A. Mantion, P. Graf, J. Plendl, A. F. Thunemann, W. P. Meier, A. Taubert, A. Luch and G. Reiser., "Effects of Silver Nanoparticles on Primary Mixed Neural Cell Cultures: Uptake, Oxidative Stress and Acute Calcium Responses." Toxicological Sciences 126(2): 457-468 (2012).
48.Haleem Khan, A. A. and S. Mohan Karuppayil., "Fungal pollution of indoor environments and its management." Saudi Journal of Biological Sciences 19(4): 405-426 (2012).
49.Han, T., H. R. An and G. Mainelis., "Performance of an Electrostatic Precipitator with Superhydrophobic Surface when Collecting Airborne Bacteria." Aerosol Science and Technology 44(5): 339-348 (2010).
50.Heo, K. J., H. B. Kim and B. U. Lee., "Concentration of environmental fungal and bacterial bioaerosols during the monsoon season." Journal of Aerosol Science 77(0): 31-37 (2014).
51.Hospodsky, D., J. Qian, W. W. Nazaroff, N. Yamamoto, K. Bibby, H. Rismani-Yazdi and J. Peccia., "Human Occupancy as a Source of Indoor Airborne Bacteria." Plos One 7(4): 10 (2012).
52.Hsin, Y.-H., C.-F. Chen, S. Huang, T.-S. Shih, P.-S. Lai and P. J. Chueh., "The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells." Toxicology Letters 179(3): 130-139 (2008).
53.Hsu, Y. C., P. Y. Kung, T. N. Wu and Y. H. Shen, "Characterization of Indoor-Air Bioaerosols in Southern Taiwan," Aerosol and Air Quality Research, 12(4), 651-661 (2012).
54.Huang, H. L., M. G. Lee and J. H. Tai., "Controlling Indoor Bioaerosols Using a Hybrid System of Ozone and Catalysts." Aerosol and Air Quality Research 12(1): 73-82 (2012).
55.Huang, R. Agranovski, I., Pyankov, O. and Grinsphun, S., "Removal of Viable Bioaerosol Particles with a Low Efficiency HVAC Filter Enhanced by Continuous Emission of Unipolar Air Ions." Indoor Air 18: 106–112 (2008).


56.Huang, Y. H., M. H. C. Chen, B. H. Lee, K. H. Hsieh, Y. K. Tu, J. J. Lin and C. H. Chang., "Evenly Distributed Thin-Film Ag Coating on Stainless Plate by Tricomponent Ag/Silicate/PU with Antimicrobial and Biocompatible Properties." Acs Applied Materials & Interfaces 6(22): 20324-20333 (2014).
57.Hurtado, L., G. Rodríguez, J. López, J. E. Castillo, L. Molina, M. Zavala and P. J. E. Quintana., "Characterization of atmospheric bioaerosols at 9 sites in Tijuana, Mexico." Atmospheric Environment 96(0): 430-436 (2014).
58.Jo, W.K., "Bioaerosols in Apartment Buildings." Encyclopedia of Environmental Health 323–330 (2011).
59.Johnston, H. J., G. Hutchison, F. M. Christensen, S. Peters, S. Hankin and V. Stone., "A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity." Critical Reviews in Toxicology 40(4): 328-346 (2010).
60.Jones, A. M. and R. M. Harrison., "The effects of meteorological factors on atmospheric bioaerosol concentrations—a review." Science of The Total Environment 326(1–3): 151-180 (2004).
61.Jung, J. H., G. B. Hwang, J. E. Lee and G. N. Bae., "Preparation of Airborne Ag/CNT Hybrid Nanoparticles Using an Aerosol Process and Their Application to Antimicrobial Air Filtration." Langmuir 27(16): 10256-10264 (2011).
62.Kalogerakis, N., D. Paschali, V. Lekaditis, A. Pantidou, K. Eleftheriadis and M. Lazaridis., "Indoor air quality—bioaerosol measurements in domestic and office premises." Journal of Aerosol Science 36(5–6): 751-761 (2005).
63.Kampmann, Y., A. Klingshirn, K. Kloft and J. Kreyenschmidt., "The application of ionizers in domestic refrigerators for reduction in airborne and surface bacteria." Journal of Applied Microbiology 107(6): 1789-1798 (2009).
64.Karra, S. and E. Katsivela., "Microorganisms in bioaerosol emissions from wastewater treatment plants during summer at a Mediterranean site." Water Research 41(6): 1355-1365 (2007).
65.Kembel, S. W., E. Jones, J. Kline, D. Northcutt, J. Stenson, A. M. Womack, B. J. M. Bohannan, G. Z. Brown and J. L. Green., "Architectural design influences the diversity and structure of the built environment microbiome." Isme Journal 6(8): 1469-1479 (2012).
66.Kesavan, J. and J. L. Sagripanti., "Evaluation criteria for bioaerosol samplers." Environmental Science-Processes & Impacts 17(3): 638-645 (2015).
67.Kilár, A., Á. Dörnyei and B. Kocsis., "Structural characterization of bacterial lipopolysaccharides with mass spectrometry and on- and off-line separation techniques." Mass Spectrometry Reviews 32(2): 90-117 (2013).
68.Kim, K. T., L. Truong, L. Wehmas and R. L. Tanguay., "Silver nanoparticle toxicity in the embryonic zebrafish is governed by particle dispersion and ionic environment." Nanotechnology 24(11): 8 (2013).
69.Kruszewski, M., K. Brzoska, G. Brunborg, N. Asare, M. Dobrzyńska, M. Dušinská, L. M. Fjellsb, A. Georgantzopoulou, J. Gromadzka-Ostrowska, A. C. Gutleb, A. Lankoff, Z. Magdolenová, E. R. Pran, A. Rinna, C. Instanes, W. J. Sandberg, P. Schwarze, T. Stępkowski, M. Wojewódzka and M. Refsnes., "Chapter Five - Toxicity of Silver Nanomaterials in Higher Eukaryotes. " Advances in Molecular Toxicology. C. F. James, Elsevier. Volume 5: 179-218 (2011).
70.Lange, J. L., P. S. Thorne and N. Lynch., "Application of flow cytometry and fluorescent in situ hybridization for assessment of exposures to airborne bacteria." Applied and Environmental Microbiology 63(4): 1557-1563 (1997).
71.Lankveld, D. P. K., A. G. Oomen, P. Krystek, A. Neigh, A. Troost – de Jong, C. W. Noorlander, J. C. H. Van Eijkeren, R. E. Geertsma and W. H. De Jong., "The kinetics of the tissue distribution of silver nanoparticles of different sizes." Biomaterials 31(32): 8350-8361 (2010).
72.Laumbach, R. J. and H. M. Kipen., "Bioaerosols and sick building syndrome: particles, inflammation, and allergy." Current Opinion in Allergy and Clinical Immunology 5(2): 135-139 (2005).
73.Lee, B. U., "Life Comes from the Air: A Short Review on Bioaerosol Control." Aerosol and Air Quality Research 11(7): 921-927 (2011).
74.Lee, B.U., Yun, S.H., Ji, J. and Bae, G.N., "Inactivation of S. Epidermidis, B. Subtilis, and E. Coli Bacteria Bioaerosols Deposited on a Filter Utilizing Airborne Silver Nanoparticles." J. Microbiol. Biotechnol. 18: 176–182 (2008).


75.Lee, B.U., Yun, S.H., Jung, J.H. and Bae, G.N., "Effect of relative Humidity and Variation of Particle Number Size Distribution on the Inactivation Effectiveness of Airborne Silver Nanoparticles Against Bacteria Bioaerosols Deposited on a Filter." J. Aerosol Sci. 41: 447–456 (2010).
76.Lee, J.H., Wu, C.Y., Wysocki, K.M., Farrah, S. and Wander, J., "Efficacy of Iodine Treated Biocidal Filter Media Against Bacterial Spore Aerosols." J. Appl. Microbiol. 105: 1318–1326 (2008).
77.Levard, C., E. M. Hotze, G. V. Lowry and G. E. Brown., "Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity." Environmental Science & Technology 46(13): 6900-6914 (2012).
78.Levard, C., S. Mitra, T. Yang, A. D. Jew, A. R. Badireddy, G. V. Lowry and G. E. Brown., "Effect of Chloride on the Dissolution Rate of Silver Nanoparticles and Toxicity to E. coli." Environmental Science & Technology 47(11): 5738-5745 (2013).
79.Li, C. S. and Y. C. Wang., "Surface germicidal effects of ozone for microorganisms." Aiha Journal 64(4): 533-537 (2003).
80.Li, P. R., J. C. Wei, Y. F. Chiu, H. L. Su, F. C. Peng and J. J. Lin., "Evaluation on Cytotoxicity and Genotoxicity of the Exfoliated Silicate Nanoclay." Acs Applied Materials & Interfaces 2(6): 1608-1613 (2010).
81.Li, T. C., S. Ambu, K. Mohandas, M. J. Wah, L. H. Sulaiman and M. Murgaiyah., "Bacterial constituents of indoor air in a high throughput building in the tropics." Tropical Biomedicine 31(3): 540-556 (2014).
82.Li, W.-M., S. C. Lee and L. Y. Chan., "Indoor air quality at nine shopping malls in Hong Kong." Science of The Total Environment 273(1–3): 27-40 (2001).
83.Li WR, Xie XB, Shi QS, Zeng HY, Yang YS, Chen YB., "Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli." Appl Microbiol Biotechnol 85:1115–1122 (2010).
84.Li, Y., W. Zhang, J. Niu and Y. Chen., "Surface-coating-dependent dissolution, aggregation, and reactive oxygen species (ROS) generation of silver nanoparticles under different irradiation conditions." Environmental Science and Technology 47(18): 10293-10301 (2013).

85.Liao, C. M., W. C. Luo, S. C. Chen, J. W. Chen and H. M. Liang., "Temporal/seasonal variations of size-dependent airborne fungi indoor/outdoor relationships for a wind-induced naturally ventilated airspace." Atmospheric Environment 38(26): 4415-4419 (2004).
86.Liao, Y. J., J. R. Yang, S. E. Chen, S. J. Wu, S. Y. Huang, J. J. Lin, L. R. Chen and P. C. Tang., "Inhibition of Fumonisin B-1 Cytotoxicity by Nanosilicate Platelets during Mouse Embryo Development." Plos One 9(11): 11 (2014).
87.Lin, J. J., W. C. Lin, S. D. Li, C. Y. Lin and S. H. Hsu., "Evaluation of the Antibacterial Activity and Biocompatibility for Silver Nanoparticles Immobilized on Nano Silicate Platelets." Acs Applied Materials & Interfaces 5(2): 433-443 (2013).
88.Liu, J. Y., K. G. Pennell and R. H. Hurt., "Kinetics and Mechanisms of Nanosilver Oxysulfidation." Environmental Science & Technology 45(17): 7345-7353 (2011).
89.Liu, J. Y., D. A. Sonshine, S. Shervani and R. H. Hurt., "Controlled Release of Biologically Active Silver from Nanosilver Surfaces." Acs Nano 4(11): 6903-6913 (2010).
90.Liu, J. Y., Z. Y. Wang, F. D. Liu, A. B. Kane and R. H. Hurt., "Chemical Transformations of Nanosilver in Biological Environments." Acs Nano 6(11): 9887-9899 (2012).
91.Lotfi M, Vosoughhosseini S, Ranjkesh B, Khani S, Saghiri M, Zan V., "Antimicrobial efficacy of nanosilver, sodium hypochlorite and chlorhexidine gluconate against Enterococcus faecalis. " Afr J Biotechnol 10:6799–6803 (2011).
92.Lu K, "Nanoparticulate materials: synthesis, characterization, and processing." Willey, New Jersey (2013).
93.Macher, Janet M., "Positive-Hole Correction of Multiple-Jet Impactors for Collecting Viable Microorganisms" Am. Ind. Hyg. Assoc. J. 50(11):561-568 (1989).
94.Mainelis, G., K. Willeke, A. Adhikari, T. Reponen and S. A. Grinshpun., "Design and collection efficiency of a new electrostatic precipitator for bioaerosol collection." Aerosol Science and Technology 36(11): 1073-1085 (2002).

95.Mandal, J.& Brandl, H., "Bioaerosols in Indoor Environment-A Review with Special Reference to Residential and Occupational Locations." Open Environmental & Biological Monitoring Journal, 4, 83-96 (2011).
96.McFarland AD, van Duyne RP, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. " Nano Lett 3:1057–1062 (2003).
97.Mehrbod P, Motamed N, Tabatabaian M, Soleimani Estyar R, Amini E, Shahidi M, Kheiri MT, "In vitro antiviral effect of nanosilver on influenza virus." Daru 17:88–93 (2009).
98.Mendis, D. A., M. Rosenberg and F. Azam., "A note on the possible electrostatic disruption of bacteria. " Ieee Transactions on Plasma Science 28(4): 1304-1306 (2000).
99.Menetrez, M. Y., K. K. Foarde, T. R. Dean and D. A. Betancourt., "The effectiveness of UV irradiation on vegetative bacteria and fungi surface contamination." Chemical Engineering Journal 157(2–3): 443-450 (2010).
100.Mentese, S., A. Y. Rad, M. Arisoy and G. Gullu., "Seasonal and Spatial Variations of Bioaerosols in Indoor Urban Environments, Ankara, Turkey." Indoor and Built Environment 21(6): 797-810 (2012).
101.Muilenberg, M.L., "Sampling devices." Immunology and Allergy Clinics of North America 23 (3), 337–355 (2003).
102.Muise, B., Seo, D.C., Blair, E.E., Applegate, T., "Mold spore penetration through wall service outlets: a pilot study." Environmental Monitoring and Assessment 163 (1–4), 95–104 (2010).
103.Nantka, M. B., "Indoor conditions in silesian buildings with natural ventilation," Indoor and Built Environment, 15(6), 571-582 (2006).
104.Niakan M, Azimi HR, Jafarian Z, Mohammadtaghi G, Niakan S, Mostafavizade SM, "Evaluation of nanosilver solution stability against Streptococcus mutans, Staphylococcus aureus and Pseudomonas aeruginosa. " Jundishapur J Microbiol 6:e8570 (2013a). doi:10.5812/jjm.8570
105.Niakan S, Niakan M, Hesaraki S, Nejad-moghaddam MR, Moradi M, Hanafiabdar M, Allamezadeh R, SabouriM ,"Comparison the antibacterial effects of nanosilver with 18 antibiotics on multidrug resistance clinical isolates of Acinetobacter baumannii." Jundishapur J Microbiol 6:e8341 (2013b). doi:10.5812/jjm.8341
106.Nazaroff, W. W., "Indoor bioaerosol dynamics." Indoor Air (2014).
107.Okafor F, Janen A, Kukhtareva T, Edwards V, Curley M, "Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. " Int J Environ Res Publ Health 10:5221–5238 (2013).
108.Park, E.-J., J. Yi, Y. Kim, K. Choi and K. Park.,"Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism." Toxicology in Vitro 24(3): 872-878 (2010).
109.Park, J.H., Yoon, K.Y., Kim, Y.S., Byeon, J.H. and Hwang, J., "Removal of Submicron Aerosol Particles and Bioaerosols Using Carbon Fiber Ionizer Assisted Fibrous Medium Filter Media. " J. Mech. Sci. Technol. 23: 1846–1851 (2009).
110.Pasanen, A.L., "A review: Fungal exposure assessment in indoor environments. " Indoor Air, 11(2): p. 87-98 (2001).
111.Pastuszka, J. S., U. K. T. Paw, D. O. Lis, A. Wlazlo and K. Ulfig., "Bacterial and fungal aerosol in indoor environment in Upper Silesia, Poland." Atmospheric Environment 34(22): 3833-3842 (2000).
112.Peccia, J., D. K. Milton, T. Reponen and J. Hill., "A role for environmental engineering and science in preventing bioaerosol-related disease." Environmental Science & Technology 42(13): 4631-4637 (2008).
113.Peccia, J. and M. Hernandez., "Incorporating polymerase chain reaction-based identification, population characterization, and quantification of microorganisms into aerosol science: A review." Atmospheric Environment 40(21): 3941-3961 (2006).
114.Petrus EM, Tinakumari S, Chai LC, Ubong A, Tunung R, Elexson N, Chai LF, Son R, "A study on the minimum inhibitory concentration and minimum bactericidal concentration of nanocolloidal silver on food-borne pathogens. " Int Food Res J 18:55–66 (2011).
115.Pham, T.-D. and B.-K. Lee., "Cu doped TiO2/GF for photocatalytic disinfection of Escherichia coli in bioaerosols under visible light irradiation: Application and mechanism." Applied Surface Science 296(0): 15-23 (2014a).
116.Pham, T. D. and B. K. Lee., "Effects of Ag doping on the photocatalytic disinfection of E-coli in bioaerosol by Ag-TiO2/GF under visible light." Journal of Colloid and Interface Science 428: 24-31 (2014b).
117.Pieckova, E., Wilkins, K., "Airway toxicity of house dust and its fungal composition." Annals of Agricultural and Environmental Medicine 11, 67–73 (2004).
118.Pulit-Prociak, J., K. Stoklosa and M. Banach., "Nanosilver products and toxicity." Environmental Chemistry Letters 13(1): 59-68 (2015).
119.Reanprayoon, P. and W. Yoonaiwong., "Airborne concentrations of bacteria and fungi in Thailand border market." Aerobiologia 28(1): 49-60 (2012).
120.Reidy, B., A. Haase, A. Luch, K. A. Dawson and I. Lynch., "Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications." Materials 6(6): 2295-2350 (2013).
121.Ren, P., T. M. Jankun, K. Belanger, M. B. Bracken and B. P. Leaderer., "The relation between fungal propagules in indoor air and home characteristics." Allergy 56(5): 419-424 (2001).
122.Reponen, T., "Methodologies for Assessing Bioaerosol Exposures. " Encyclopedia of Environmental Health. J. O. Nriagu. Burlington, Elsevier: 722-730 (2011).
123.Riley, R.L. and Nardell, E.A., "Clearing the air. The theory and application of ultraviolet air disinfection. " Am. Rev. Respir. Dis. 139, 1286–1294 (1989).
124.Rocha, C. A., R. J. Silva, A. E. Monzon and J. Alfonzo., "Characterization of Indoor Air Bioaerosols in an Electrical Headquarter Building." Indoor and Built Environment 22(6): 910-919 (2013).
125.Saijo, Y., A. Kanazawa, A. Araki, K. Morimoto, K. Nakayama, T. Takigawa, M. Tanaka, E. Shibata, T. Yoshimura, H. Chikara and R. Kishi., "Relationships between mite allergen levels, mold concentrations, and sick building syndrome symptoms in newly built dwellings in Japan." Indoor Air 21(3): 253-263 (2011).
126.Seo, K. H., B. W. Mitchell, P. S. Holt and R. K. Gast., "Bactericidal effects of negative air ions on airborne and surface Salmonella enteritidis from an artificially generated aerosol." Journal of Food Protection 64(1): 113-116 (2001).
127.Shahrokh S, Emtiazi G, "Toxicity and unusual biological behavior of nanosilver on Gram-positive and negative bacteria assayed by microtiter-plate. " Eur J Biol Sci 1:28–31 (2009).
128.Su, H. L., C. C. Chou, D. J. Hung, S. H. Lin, I. C. Pao, J. H. Lin, F. L. Huang, R. X. Dong and J. J. Lin., "The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay." Biomaterials 30(30): 5979-5987 (2009).
129.Su, H. L., S. H. Lin, J. C. Wei, I. C. Pao, S. H. Chiao, C. C. Huang, S. Z. Lin and J. J. Lin., "Novel Nanohybrids of Silver Particles on Clay Platelets for Inhibiting Silver-Resistant Bacteria." Plos One 6(6): 10 (2011).
130.Takeda, M., Y. Saijo, M. Yuasa, A. Kanazawa, A. Araki and R. Kishi., "Relationship between sick building syndrome and indoor environmental factors in newly built Japanese dwellings." International Archives of Occupational and Environmental Health 82(5): 583-593 (2009).
131.Tseng, H. J., J. J. Lin, T. T. Ho, S. M. Tseng and S. H. Hsu., "The biocompatibility and antimicrobial activity of nanocomposites from polyurethane and nano silicate platelets." Journal of Biomedical Materials Research Part A 99A(2): 192-202 (2011).
132.Tyagi, A. K. and A. Malik., "Bactericidal action of lemon grass oil vapors and negative air ions." Innovative Food Science & Emerging Technologies 13: 169-177 (2012).
133.Tyagi, A. K., B. K. Nirala, A. Malik and K. Singh., "The effect of negative air ion exposure on Escherichia coli and Pseudomonas fluorescens." Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering 43(7): 694-699 (2008).
134.Unrine, J. M., B. P. Colman, A. J. Bone, A. P. Gondikas and C. W. Matson., "Biotic and Abiotic Interactions in Aquatic Microcosms Determine Fate and Toxicity of Ag Nanoparticles. Part 1. Aggregation and Dissolution." Environmental Science & Technology 46(13): 6915-6924 (2012).
135.Urbano, R., B. Palenik, C. J. Gaston and K. A. Prather., "Detection and phylogenetic analysis of coastal bioaerosols using culture dependent and independent techniques." Biogeosciences 8(2): 301-309 (2011).
136.Usuki, A., N. Hasegawa, H. Kadoura and T. Okamoto., "Three-dimensional observation of structure and morphology in nylon-6/clay nanocomposite." Nano Letters 1(5): 271-272 (2001).
137.Uztan, A.H., Ates, M., Abaci, O., Gulbahar, O., Erdem, N., Ciftci, O., Boyacioglu, H., "Determination of potential allergenic fungal flora and its clinical reflection in suburban elementary schools in Izmir." Environmental Monitoring and Assessment 168(1-4), 691–702 (2010).
138.Vanhee, L. M. E., H. J. Nelis and T. Coenye., "Rapid Detection and Quantification of Aspergillus fumigatus in Environmental Air Samples Using Solid-Phase Cytometry." Environmental Science & Technology 43(9): 3233-3239 (2009).
139.Verdier, T., M. Coutand, A. Bertron and C. Roques., "A review of indoor microbial growth across building materials and sampling and analysis methods." Building and Environment 80(0): 136-149 (2014).
140.Virender, K. S., "Stability and Toxicity of Silver Nanoparticles in Aquatic Environment: A Review. " Sustainable Nanotechnology and the Environment: Advances and Achievements, American Chemical Society. 1124: 165-179 (2013).
141.Vohra, A., D. Y. Goswami, D. A. Deshpande and S. S. Block., "Enhanced photocatalytic disinfection of indoor air." Applied Catalysis B: Environmental 64(1–2): 57-65 (2006).
142.Wang, Y. F., C. H. Wang and K. L. Hsu., "Size and seasonal distributions of airborne bioaerosols in commuting trains." Atmospheric Environment 44(35): 4331-4338 (2010).
143.Wei, J.-C., Y.-T. Wang and J.-J. Lin., "First evidence of singlet oxygen species mechanism in silicate clay for antimicrobial behavior." Applied Clay Science 99(0): 18-23 (2014).
144.Wei, K., Z. Zou and M. Yao., "Charge levels and Gram (±) fractions of environmental bacterial aerosols." Journal of Aerosol Science 74(0): 52-62 (2014).
145.WHO., "WHO guidelines for indoor air quality: dampness and mould." (2009).<http://www.who.int/indoorair/publications/7989289041683/en/>(accessed 15.05.13)
146.Wijnhoven, S. W. P., W. Peijnenburg, C. A. Herberts, W. I. Hagens, A. G. Oomen, E. H. W. Heugens, B. Roszek, J. Bisschops, I. Gosens, D. Van de Meent, S. Dekkers, W. H. De Jong, M. Van Zijverden, A. Sips and R. E. Geertsma., "Nano-silver - a review of available data and knowledge gaps in human and environmental risk assessment." Nanotoxicology 3(2): 109-U178 (2009).
147.Wouters, I.M., et al., "Increased levels of markers of microbial exposure in homes with indoor storage of organic household waste. " Applied and Environmental Microbiology, 66(2): p. 627-631 (2000).
148.Wright JB, Lam K, Hansen D, Burrell RE, "Efficacy of topical silver against fungal burn wound pathogens. " Am J Infect Control 27:344–350 (1999).
149.Wu, Y.-H., Chan, C.-C., Rao, C.Y., Lee, C.-T., Hsu, H.-H., Chiu, Y.-H., Chao, H.J., "Characteristics, determinants, and spatial variations of ambient fungal levels in the subtropical Taipei metropolis. " Atmospheric Environment 41, 2500-2509 (2007).
150.Xiu, Z. M., J. Ma and P. J. J. Alvarez., "Differential Effect of Common Ligands and Molecular Oxygen on Antimicrobial Activity of Silver Nanoparticles versus Silver Ions." Environmental Science & Technology 45(20): 9003-9008 (2011).
151.Yang, X. Y., A. P. Gondikas, S. M. Marinakos, M. Auffan, J. Liu, H. Hsu-Kim and J. N. Meyer., "Mechanism of Silver Nanoparticle Toxicity Is Dependent on Dissolved Silver and Surface Coating in Caenorhabditis elegans." Environmental Science & Technology 46(2): 1119-1127 (2012).
152.Yang, Y., W. Y. Chan, C. L. Wu, R. Y. C. Kong and A. C. K. Lai., "Minimizing the exposure of airborne pathogens by upper-room ultraviolet germicidal irradiation: an experimental and numerical study." Journal of the Royal Society Interface 9(77): 3184-3195 (2012).
153.Yao, M. S. and G. Mainelis., "Utilization of natural electrical charges on airborne microorganisms for their collection by electrostatic means." Journal of Aerosol Science 37(4): 513-527 (2006).
154.Yu, S.-j., Y.-g. Yin and J.-f. Liu., "Silver nanoparticles in the environment." Environmental Science: Processes & Impacts 15(1): 78-92 (2013).
155.Zarei M, Jamnejad A, Khajehali E, "Antibacterial effect of silver nanoparticles against four foodborne pathogens." Jundishapur J Microbiol 7:e8720 (2014). doi:10.5812/jjm.8720.
156.Zhang, X., B. Sahlberg, G. Wieslander, C. Janson, T. Gislason and D. Norback., "Dampness and moulds in workplace buildings: Associations with incidence and remission of sick building syndrome (SBS) and biomarkers of inflammation in a 10 year follow-up study." Science of the Total Environment 430: 75-81 (2012).
157.Zhen, S., Li, K., Yin, L., Yao, M., Zhang, H., Chen, L., Zhou, M., Chen, X., "A comparison of the efficiencies of a portable BioStage impactor and a Reuter centrifugal sampler (RCS) High Flow for measuring airborne bacteria and fungi concentrations." Journal of Aerosol Science 40 (6), 503–513 (2009).
158.吳致呈, "空氣負離子控制室內空氣污染物之研究", 博士學位論文, 環境工程學研究所, 國立臺灣大學, 臺灣(2006).
159.孫國書, "室內空氣品質管理與改善簡介", 經濟部工業局產業資訊網, 臺灣(2014)。
160.連彥均, "抗菌濾材對生物氣膠控制效率之研究", 碩士學位論文, 環境工程學研究所, 國立臺灣大學, 臺灣(2012)。
161.陳炯文, "奈米矽片銀改質濾材對生物氣膠控制效率之研究", 碩士學位論文, 環境工程學研究所, 國立臺灣大學, 臺灣(2013).
162.曾顯堯, "以奈米碳管直接生長於基財產空氣負離子之研究", 碩士學位論文, 環境工程學研究所, 國立臺灣大學, 臺灣(2014).
163.趙馨、洪粕宸、羅仕麟, "生物氣膠個人採樣分析方法評估與現場應用研究", 行政院勞工委員會勞工安全衛生研究所(2012).
164.蕭儀禎, "壁面貼附材料與空氣負離子對室內生物氣膠控制效率的影響", 碩士學位論文, 環境工程學研究所, 國立臺灣大學, 臺灣(2012).
165.羅時麒, 陳伯勳, "各國室內環境品質(含空氣品質)管理機制之比較研究", 內政部建築研究所自行研究報告(2006).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top