跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 02:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周秉毅
研究生(外文):Ping-I Chou
論文名稱:溶氧、pH值、鹽度及天然有機物對於底泥硫化金屬氧化溶解動力學之影響
論文名稱(外文):Effects of Dissolved Oxygen, pH, Salinity and Natural Organic Matter on the Kinetics of Oxidative Dissolution of Sedimental Metal Sulfides
指導教授:林逸彬
口試委員:蔣本基侯嘉洪
口試日期:2015-07-13
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:61
中文關鍵詞:硫化金屬重金屬氧化溶解底泥腐植酸鹽度
外文關鍵詞:Metal sulfidesheavy metalsOxidative dissolutionSedimentsHumic acidSalinity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
硫化金屬在厭氧底泥中能夠穩定具有生物毒性之溶解態重金屬,然而,暴雨發生或是河口潮汐作用可能使底泥懸浮並暴露於好氧狀態,硫化金屬可能因此發生氧化溶解反應而提高重金屬之生物有效性並傷害生態系,本研究之目的係探討水中溶氧、pH值、鹽度及天然有機物對於三種硫化金屬: 硫化銅、硫化鉛及硫化鋅氧化溶解動力學之影響。
本研究利用可控制水中溶氧(0 mg/L, 5 mg/L 和 8.4 mg/L)之連續曝氣裝置執行三天之批次實驗,結果顯示硫化銅、硫化鉛及硫化鋅於溶氧存在之環境下確實會發生氧化溶解,反應速率之序列為:硫化鉛>硫化銅>硫化鋅,且此序列在以個別之比表面積正規化前後並無改變;低pH值及高鹽度一般而言會造成更多及更快之金屬釋出;腐植酸可以抑制硫化銅及硫化鉛之金屬釋出但會促進硫化鋅的金屬釋出;FE-SEM分析發現在10 mg/L 腐植酸反應前後,硫化金屬之外型變得更為圓滑且蓄聚情形更為明顯,而在半鹹水反應前後,除了硫化銅之外並沒有明顯變化。


Metal sulfides can stabilize toxic soluble heavy metals in anaerobic sediments. However, sediments may suspend and expose to aerobic conditions during storm events or in the estuary with tidal effects. This may cause oxidative dissolution of metal sulfides and increase metal bioavailability that can harm the ecosystem. The objective of this research is to investigate the effects of dissolved oxygen (DO), pH, natural organic matter (NOM) and salinity on the kinetics of oxidative dissolution of copper sulfide (CuS), lead sulfide (PbS) and zinc sulfide (ZnS).
Batch experiments were conducted using a continuous aeration setup that can control the dissolve oxygen concentrations (0 mg/L, 5mg/L and 8.4 mg/L) for a period of 3 d. Results demonstrated that oxidative dissolution of CuS, PbS and ZnS truly occur in the presence of DO and the rate showed the following sequence: PbS >CuS>ZnS. Low pH and high salinity generally cause more and faster metal release. Humic acid can inhibit the metal release of CuS and PbS but promote the metal release of ZnS. FE-SEM analysis showed that the morphology of three metal sulfides became rounded and aggregated in the 10mg/L HA reaction, morphology change of CuS also found in brackish water reaction but PbS and ZnS had no changed.


摘要..................................................I
Abstract.............................................II
Contents............................................III
Figures...............................................V
List of Tables......................................VII
Abbreviations......................................VIII

Chapter 1 Introduction................................1
1.1 Background........................................1
1.2 Objectives........................................2

Chapter 2 Literature Review...........................4
2.1 Metal sulfides in the sediment....................4
2.2 Metal sulfide oxidation...........................5
2.3 Effects of pH, salinity and organic matter on metal
speciation........................................9

Chapter 3 Materials and methods......................13
3.1 Chemicals and solution preparationsa.............13
3.2 Experimental apparatus and methods...............15
3.3 Analytical methods...............................17

Chapter 4 Results and Discussion.....................19
4.1 Metal sulfides characterization..................19
4.2 Stability of DO and pH in experimental setup.....23
4.3 Effects of DO on the oxidative dissolution of metal
sulfides.........................................25
4.4 Effect of pH on the oxidative dissolution of metal
sulfides.........................................28
4.5 Effect of salinity on the oxidative dissolution of
metal sulfides...................................31
4.6 Effect of humic acid on the oxidative dissolution
of metal sulfides................................35

Chapter 5 Conclusions and Recommendations............39
5.1 Conclusions......................................39
5.2 Recommendations for future study.................40

References...........................................41

Appendix.............................................48


Allen, H, E., Fu, G, M., Deng, B, L., 1993. Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments. Enivronmental Toxiology And Chemistry. 12, 1441-1453.

Amin B., Ismail A., Arshad A., Yap C.K., Kamarudin M.S. 2009. Anthropogenic impacts on heavy metal concentrations in the coastal sediments of Dumai, Indonesia. Environmental Monitoring and Assessment. 148:291–305.

Belzile, N., Chen, Y.W., Gunn, J.M., Dixit, S.S. 2004. Sediment trace metal profiles in lakes of Killarney Park, Canada: from regional to continental influence. Environmental Pollution. 130: 239–48.

Brown, B. and J. Neff. 1993. Bioavailability of sediment-bound contaminants to marine organisms. Pacific Northwest National Laboratory PNL-8761, contract DE-AC06-76RLF 1830 (NOAA/DOE). Richland, Washington.

Bubb, J.M., Lester, J.N., 1994. Anthropogenic heavy metal inputs to lowland river system, a case study: The River Stour, U.K. Water Air and Soil Pollution. 78, 279-296.

Burton E.D., Bush R.T., Sullivan L.A. 2006. Acid-volatile sulfide oxidation in coastal flood plain drains: iron–sulfur cycling and effects on water quality. Environmental Science & Technology. 40:1217–22.

Caetano, M., Madureira, M.J., Vale, C. 2003. Metal remobilisation during resuspension of anoxic contaminated sediment: short-term laboratory study. Water Air And Soil Pollution. 143:23-40.

Calmano, W., Hong, J., Forstner, U.1993. Binding and mobilization of heavy-metals in contaminated sediments affected by ph and redox potential. Water science and technology. 28:223-235.

Carbonaro, R.F., Mahony, J.D., Walter, A.D., Halper, E.B., Di Toro, D.M. 2005. Experimental and modeling investigation of metal release from metal-spiked sediments. Environmental Toxicology and Chemistry. 24, 3007-3019.

Chapman, P.M., Wang, F.Y. 2001. Assessing sediment contamination in estuaries. Environmental Toxicology And Chemistry. 20:3-22.

Charriau, A., Lesven, L., Gao, Y., Leermakers, M., Baeyens, W., Ouddane, B., Billon, G., 2011. Trace metal behaviour in riverine sediments: Role of organic matter and sulfides. Applied Geochemistry. 26, 80-90.

Comans, R.N.J., van Dijk, C.P.J. 1988. Role of complexation processes in cadmium mobilization during estuarine mixing. Nature. 336:151–154.

Cooper, D.C., Morse, J.W., 1998. Extractability of metal sulfide minerals in acidic solutions: Application to environmental studies of trace metal contamination. Environmental Science & Technology. 32:1076–1078.

Di Toro, D.M., Mahony, J.D., Hansen, D.J., Scott, K.J., Hicks, M.B., Mayr, S.M., Redmond, M.S. 1990. Toxicity of cadmium in sediments: The role of acid volatile sulfide. Environmental Toxicology and Chemistry. 9, 1487-1502.

Di Toro, D.M., Mahony, J.D., Hansen, D.J., Scott, K.J., Carlson, A.R., Ankley, G.T. 1992. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environmental Science & Technology. 26: 96-101.

Drever, J.I. 1997. The geochemistry of natural waters, 3rd ed. Upper Saddle River, NJ: Prentice-Hall.

Duana, J., Gregoryb, J. 2003. Coagulation by hydrolysing metal salts. Advances in Colloid and Interface Science. 100-102: 475-502.

Gambrell, R.P., Wiesepape, J.B., Patrick, Jr.WH., Duff, M.C. 1991. The effects of pH, redox, and salinity on metal release from a contaminated sediment. Water Air And Soil Pollution. 57–58:359–67.

Gerringa, L.J.A., de Baar, H.J.W, Nolting, R.F., Paucot, H. 2001. The influence of salinity on the solubility of Zn and Cd sulphides in the Scheldt estuary. Journal of Sea Research. 46:201–11.

Guven, D.E., Akinci, G. 2013. Effect of sediment size on bioleaching of heavy metals from contaminated sediments of Izmir Inner Bay. Journal of Environmental Sciences. 25:1784–94.

Hermann, R ., Neumannmaklkau, P. 1985. The mobility of zinc, cadmium, copper, lead, iron and arsenic in ground-water as a function of redox potential and pH. Science of the Total Environment. 43:1-12.

Hong, Y.S,, Kinney, K.A., Reible, D.D. 2011. Effects of cyclic changes in pH and salinity on metals release from sediments. Enivronmental Toxiology And Chemistry. 30-8, 1775-1784.

Kerner, M.,Wallmann, K. 1992. Remobilization events involving Cd and Zn from intertidal flat sediments in the elbe estuary during the tidal cycle. Estuarine, Coastal and Shelf Science. 35:371-393.

Kester, D. R., Duedall, I. W., Connors, D. N. and Pytkowicz, R. M. (1967). Preparation of artificial seawater. Limnology & Oceanography 12, 176—179.

Klučáková, M., Omelka, L. 2004. Sorption of metal ions on lignite and humic acids. Chemical Papers. 58, 170-175.

LaKind, J.S., Stone, A.T. 1989. Reductive dissolution of goethite by phenolic reductants. Geochimica et Cosmochimica Acta. 53:961-971.

Li, Y.H., Burkhardt, L., Teraoka, H. 1984. Desorption and coagulation of trace elements during estuarine mixing. Geochimica et Cosmochimica Acta. 48:1659–1664.

Marchand, C., Allenbach, M., Lallier-Verges, E. 2011. Relationships between heavy metals distribution and organic matter cycling in mangrove sediments (Conception Bay, New Caledonia). Geoderma. 160, 444-456.

Morse, J.W., Millero, F.J., Cornwell, J.C., Rickard, D. 1987. The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. Earth-Science Reviews. 24, 1-42.

Murphy, E.M., Zachara, J.M., Smith, S.C., Phillips, J.L., Wietsma, T.W., 1994. Interaction of hydrophobic organic compounds with mineral-bound humic substances. Environmental Science & Technology. 28, 1291–1299.

Ogston, A.S., Cacchione, D.A., Sternberg, R.W., Kineke, G.C., 2000. Observations of storm and river flood-driven sediment transport on the northern California continental shelf. Continental Shelf Research. 20, 2141–2162.

O’Loughlin, E.J., Burris, D.R., Delcomyn, C.A. 1999. Reductive dechlorination of trichloroethene mediated by humic–metal complexes. Environmental Science & Technology. 33, 1145–1147.

Pandey, A.K., Pandey, S.D., Misra, V. 2000. Stability constants of metal–humic acid complexes and its role in environmental detoxification. Ecotoxicology and Environmental Safety. 47, 195–200.

Schulze, E.D., Mooney, H.A. 1993. Biodiversity and ecosystem function. Springer-Verlag. 88–90.

Snoeyink, V. L., Jenkins, D. 1980. Water Chemistry. 1 ed. Wiley.

Staehelin, J.; Hoigné, J., Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environmental Science & Technology. 1985, 19 (12), 1206-1213.

Standard methods for the examination of water and wastewater, 21 st Ed. In APHP: Washington, DC, 2012.

Turner, A., Millward, G.E. 1994. Partitioning of trace metals in a macrotidal estuary: Implications for contaminant transport models. Estuarine, Coastal and Shelf Science. 39:5–58.

Uchimiya, M., Lima, I.M., Klasson, K.T., Wartelle, L.H. 2010. Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter. Chemosphere.80, 935-940.

Wershaw, R.L., Burcar, P.J., Goldberg, M.C. 1969. Interaction of pesticides with natural organic material. Environmental Science & Technology.3:271-273.

Yu. Q., Kandegedara. A., Xu. Y., Rorabacher. D.B. 1997. Avoiding interferences from Good''s buffers: A contiguous series of noncomplexing tertiary amine buffers covering the entire range of pH 3-11. Analytical Biochemistry. 253:50-56.

Zahra A., Hashmi M.Z., Malik R.N., Ahmed Z. 2013. Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah—feeding tributary of the Rawal Lake Reservoir, Pakistan. Science of the Total Environment. 470–471C:925–33.

Zheng N.,Wang Q., Liang Z., Zheng D. 2008. Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China. Environmental Pollution. 154:135–42.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文