跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/29 14:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾薇如
研究生(外文):Wei-Ju Tseng
論文名稱:利用固相微萃取技術分析個人保健用品中之人造麝香
論文名稱(外文):Determinations of Synthetic Musks in Personal Care Products by Solid-Phase Microextraction
指導教授:蔡詩偉蔡詩偉引用關係
口試委員:陳美蓮林嘉明
口試日期:2015-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:71
中文關鍵詞:人造麝香固相微萃取個人產品暴露評估
外文關鍵詞:Synthetic musksSolid phase microextractionPersonal productDermal exposure
相關次數:
  • 被引用被引用:1
  • 點閱點閱:87
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人造麝香(Synthetic musk)近年來廣泛的運用於在各式個人產品(Personal care product)中以增添香味,目前美國環保署已將此物質歸類為高生產量類,人造麝香目前已經被研究發現有ㄧ些健康顧慮,硝基麝香被證實與光過敏反應及神經毒性有關,而不論在體內或體外實驗,部分麝香被認定與內分泌干擾物有關,因此,考慮到人造麝香的健康疑慮及麝香能被廣泛在環境及人體中偵測到,人造麝香在產品中的濃度是相當重要及需要被瞭解。
  就目前大多數研究,麝香的分析方法皆採用傳統的萃取方式,相較於傳統使用大量溶劑,固相微萃取(Solid-phase microextraction, SPME)是一個理想的萃取工具,它結合萃取、濃縮及脫附成為單ㄧ簡單步驟,而在應用固相微萃取於分析產品中人造麝香濃度前,此方法可行性必須先被驗證。
  固相微萃取結合氣相層析串聯質譜進行12 種麝香混合物的分析,樣品在萃取前會先以水稀釋,萃取時以65μm PDMS/DVB纖維進行頂空萃取,萃取溫度為70°C,萃取時間為40分鐘,經過熱托附後,會些許殘留效應,針對12種不同麝香物質,此方法可以達到高敏感度,多環麝香的偵測極限為0.002 ng/ml,硝基麝香偵測極限為0.05ng/ml;而檢量線也呈現良好的線性(>0.9)及精準度(RSD<10%),另外,標準添加相同濃度在不同樣品介質中,回收率為91%-135%。
  此研究提供台灣個人產品濃度的資料,共有超過100個樣品進行麝香分析,結果發現高比例及高濃度的麝香出現在產品中,特別是佳樂麝香(Galaxolide HHCB), 吐納麝香(Tonalide, AHTN)及酮麝香(Musk ketone, MK),最高濃度可分別達到15555、13398及8324μg/g,高濃度的麝香可以在香水、身體乳液及頭髮修護產品類發現;每日皮膚暴露量由研究中各物質的平均值進行計算,每日總麝香皮膚吸收量為每天每公斤22.54μg,研究另外顯示,針對高出現頻率物質HHCB,香水和身體乳液為皮膚吸收主要暴露來源,占所有產品類別96%,而研究與其他暴露途徑(食入)比較,皮膚吸收暴露為人類暴露麝香的主要來源。
  由於人造麝香在台灣環境分布的資料不足,未來還需進行研究不同環境介質的麝香濃度已進行更完整暴露評估,而在人造麝香的毒性資料及皮膚吸收率資料上也尚不足,這方面關於人造麝香健康效應及暴露評估有需要更多研究關注。


Synthetic musk is widely used as fragrances in many personal care products for enhancing scent and covering odor in recent years. Hence, the US Environmental Protection Agency (USEPA) classified polycyclic musk as one of the High Production Volume (HPV) chemicals. Synthetic musk is found to be related with several health concerns such as photo-allergic reactions and neurotoxicity. From in vivo and in vitro studies, there are evidences that some synthetic musks are considered as the potential endocrine disruptors. Concerning the possible heath effect and the fact that synthetic musk is commonly detected in the environment and human samples, the information for the distributions of synthetic musks in various personal care products should be acquired.
Solid-phase microextraction (SPME) is an ideal tool by combining sampling, extraction, concentration and injection into a single process. However, to the best of our knowledge, studies are still limited regarding the analysis of synthetic musk in personal care products by SPME. As a result, SPME procedures need to be validated first before the determinations of synthetic musks in personal care products can be performed.
12 synthetic musk mixtures were analyzed by solid phase microextraction method (SPME) in multiple reaction monitoring (MRM) mode. The samples were first diluted by water before the extraction. The optimum extraction was performed at 70°C for 40 minutes with 300 rpm. The 65μm PDMS/DVB fiber was exposed to the headspace over the samples. A little carry-over effects was observed from the thermal desorption of the sample. The sensitivities of the method for different compounds were low enough to determine the concentrations from personal care products The linear range and method detection limits (MDL) of polycyclic musk compounds were 0.01 to 2 ng/ml, 0.002 ng/ml respectively and the linear range for nitro musk was 0.1 to 20 ng/ml, the MDL was 0.05 ng/ml. Good linearity and precision were presented and the recoveries ranged from 91%-135%.
This study provided the first data of synthetic musks level in Taiwan, more than 100 products samples in Taiwan were determined for the concentrations of both polycyclic musk and nitro musk., it was found that the high occurrence percentage and high concentration in products samples especially for compounds HHCB (15,555μg/g), AHTN (13,398μg/g), DPMI (2,013μg/g) and MK (8,324μg/g). The high level of synthetic musks were mainly found in perfumer, body lotion and hair care products categories. Daily dermal exposure was estimated, based on the mean concentrations of musks, the daily exposure of total synthetic musks through application of personal care products was 22.54μg /kg/day. The results indicates that perfume and body lotion were major sources of human exposure, which occupied 96% for HHCB. Furthermore, compared to other exposure route, it strongly suggested that dermal absorption from personal care product was expected to be the main source of human exposure.
For future work, further researches are acquired to obtain the data regarding the absorption rate, toxicity and concentration of synthetic musks in different environmental matric to assess health risk.


Table of contents
中文摘要………………………………………………………………I
Abstract………………………………………………………………..III
Table of contents…………………………………………………….. .V
List of tables…………………………………………………………...VII
List of figures……………………………………………………….....VIII
Appendix…………………………………………………………...…X
Chapter 1 Introduction……………………………………………….1
1.1 Background………………………………………………..……...1
1.2 Objective……………………………………………………...…..2
1.3 Research structure………………………………………..……….3
2 Chapter 2 Literature review……………………………………….…4
2.1 Synthetic musks…………………………………………………..4
2.1.1 Property…………………………………………………….……………….4
2.1.2 Development and use……………………………………………………….4
2.1.3 Environmental fate………………………………………………………….6
2.1.4 Health effect………………………………………………………………...7
2.1.5 Guideline……………………………………………………………………8
2.1.6 Analytical methods………………………………………………………….9
2.2 SPME technique………………………………………………….10
2.2.1 SPME principle……………………………………………………………..10
2.2.2 Advantages and disadvantages……………………………… ……………..11
2.2.3 Parameter…………………………………………………………………....12
2.3 Personal care product matrix effect……………………………….13
3 Chapter 3 Materials and Methods……………….............................16
3.1 Reagents and standards………………………………………….16
3.2 Sample collection and preparation………………………...........16
3.3 SPME extraction…………………………………………..........17
3.4 Instrument analysis……………………………………...............18
3.5 Matrix effect…………………………………………………….19
3.6 Method validation……………………………………………….19
3.7 Dermal exposure calculation…………………………………….21
4 Chapter 4 Results and Discussions………………………………….22
4.1 GC-MSMS analysis………..……………………………………22
4.2 Optimization of SPME parameters for synthetic musks………...22
4.3 Dilution ratio……………………………………………..……...26.
4.4 Method validation……………………………………..………...27
4.5 Application to the analysis on personal care products…………..29
4.6 Exposure assessment……………………………….……………33
4.7 Limitation………………………………………………………..35
5 Conclusion…………………………………………………………….37
6 Reference ……………………………………………………………..39





7 List of Tables
Table 1. Concentrations of musk compounds in wastewater influent and effluent……..43
Table 2. HHCB, AHTN in water samples in Taiwan……………………………………43
Table 3. Analytical methods in environmental matrices………………………………...44
Table 4. Comparison of extraction method for SVOCs and VOCs……………………..44
Table 5. Physical-chemical properties of polycyclic musk, nitro musk and surrogates…45
Table 6. Experimental GC-MS/MS parameters of target compounds…………………...48
Table 7. Two-level calibration range, equation and R2 of synthetic musk compounds….49
Table 8. The calibration range, method detection limit, RSD and spike recovery of synthetic musk compounds…………………………………………………………….....50
Table 9. Studies about the analysis of musk compounds in personal care products……...51
Table 10. Percentage of samples in each category containing a specific musk…………..52
Table 11. Median, mean and maximum of investigated synthetic musk compounds in various personal care products……………………………………………………………54
Table 12. HHCB, AHTN, MX and musk MK in personal care products samples……….55
Table 13. The calculation of the total human exposure from personal care products…….56
Table 14. Estimated human exposure to high frequency musk compounds by using personal care products in Taiwan…………………………………………………………56


8 List of Figures
Figure 1 Chromatogram of the 10 synthetic musk standards and 2 surrogates under extraction by HS-SPME in MRM mode……………………………………………………………..57
Figure 2 Chromatogram of Galaxolide (HHCB) by HS-SPME in MRM mode………….58
Figure 3 Chromatogram of Musk xylene (MX) by HS-SPME in MRM mode…………...58
Figure 4 Chromatogram of d3-AHTN by HS-SPME in MRM mode…………………….58
Figure 5 Effect of extraction time on polycyclic musk compounds………………………59
Figure 6 Effect of extraction time on nitro musk compounds…………………………….59
Figure 7 Effect of extraction temperature on polycyclic musk compounds…………….....60
Figure 8 Effect of extraction temperature on nitro musk compounds……………………..60
Figure 9 Response of polycyclic musk desorption, five fiber blank after sampling
2 ng/ml of each polycyclic compound……………………………………………………...61
Figure 10 Response of nitro musk desorption, five fiber blank after sampling 20 ng/ml of each nitro compound………………………………………………………………………..61
Figure 11 The calibration of washing detergent sample with different dilution rate on DBMI compound……………………………………………………………………………….......62
Figure 12 The calibration of washing detergent sample with different dilution rate on MX compound…………………………………………………………………………………...62
Figure 13 The calibration curve of DPMI with concentration ranged from 0.01-2ng/ml…..63
Figure 14 The calibration curve of ADBI with concentration ranged from 0.01-2ng/ml…...63
Figure 15 The calibration curve of AHMI with concentration ranged from 0.01-2ng/ml…..63
Figure 16 The calibration curve of ATII with concentration ranged from 0.01-2ng/ml…….64
Figure 17 The calibration curve of HHCB with concentration ranged from 0.01-2ng/ml…..64
Figure 18 The calibration curve of AHTN with concentration ranged from 0.01-2ng/ml…..64
Figure 19 The calibration curve of MA with concentration ranged from 0.1-20ng/ml……..65
Figure 20 The calibration curve of MX with concentration ranged from 0.1-20ng/ml……65
Figure 21 The calibration curve of MK with concentration ranged from 0.1-20ng/ml……65
Figure 22 The calibration curve of MM with concentration ranged from 0.1-20ng/ml…...66
Figure 23 The calibration curve of d15-MX……………………………………………….66
Figure 24 The calibration curve of d3- ATHN …………………………………………......66



Appendix


Appendix 1 Levels of synthetic musks detected in personal care products……………..67



[1] Kraft, P. (2004). Aroma chemicals IV: musks. Chemistry and Technology of Flavors and Fragrances, 143.
[2] Zeeman, M., Auer, C. M., Clements, R. G., Nabholz, J. V., & Boethling, R. S. (1995). US EPA regulatory perspectives on the use of QSAR for new and existing chemical evaluations. SAR and QSAR in environmental research, 3(3), 179-201.
[3] Heberer, T. (2002). Occurrence, fate, and assessment of polycyclic musk residues in the aquatic environment of urban areas—a review. Acta hydrochimica et hydrobiologica, 30(5‐6), 227-243.
[4] Rimkus, G. G. (1999). Polycyclic musk fragrances in the aquatic environment. Toxicology letters, 111(1), 37-56.
[5] Nakata, H. (2005). Occurrence of synthetic musk fragrances in marine mammals and sharks from Japanese coastal waters. Environmental science & technology, 39(10), 3430-3434.
[6] Lignell, S., Darnerud, P. O., Aune, M., Cnattingius, S., Hajslova, J., Setkova, L., & Glynn, A. (2008). Temporal trends of synthetic musk compounds in mother′ s milk and associations with personal use of perfumed products.Environmental science & technology, 42(17), 6743-6748.
[7] Brunn, H., Bitsch, N., & Amberg-Müller, J. (2004). Toxicology of synthetic musk compounds in man and animals. In Series Anthropogenic Compounds(pp. 259-280). Springer Berlin Heidelberg.
[8] Witorsch, R. J., & Thomas, J. A. (2010). Personal care products and endocrine disruption: a critical review of the literature. Critical reviews in toxicology,40(sup3), 1-30.
[9] Peck, A. M. (2006). Analytical methods for the determination of persistent ingredients of personal care products in environmental matrices. Analytical and bioanalytical chemistry, 386(4), 907-939.
[10] Pietrogrande, M. C., & Basaglia, G. (2007). GC-MS analytical methods for the determination of personal-care products in water matrices. TrAC Trends in Analytical Chemistry, 26(11), 1086-1094.
[11] Bester, K. (2009). Analysis of musk fragrances in environmental samples. Journal of chromatography A, 1216(3), 470-480.

[12] Garcı́a-Jares, C., Llompart, M., Polo, M., Salgado, C., Macı́as, S., & Cela, R. (2002). Optimisation of a solid-phase microextraction method for synthetic musk compounds in water. Journal of Chromatography A, 963(1), 277-285.
[13] Eh, M. (2004). New alicyclic musks: The fourth generation of musk odorants.Chemistry & biodiversity, 1(12), 1975-1984.
[14] Reiner, J. L., & Kannan, K. (2006). A survey of polycyclic musks in selected household commodities from the United States. Chemosphere, 62(6), 867-873.
[15] Simonich, S. L., Federle, T. W., Eckhoff, W. S., Rottiers, A., Webb, S., Sabaliunas, D., & De Wolf, W. (2002). Removal of fragrance materials during US and European wastewater treatment. Environmental science & technology,36(13), 2839-2847.
[16] Artola-Garicano, E., Borkent, I., Hermens, J. L., & Vaes, W. H. (2003). Removal of two polycyclic musks in sewage treatment plants: freely dissolved and total concentrations. Environmental science & technology, 37(14), 3111-3116.
[17] Bester, K. (2005). Polycyclic musks in the Ruhr catchment area—transport, discharges of waste water, and transformations of HHCB, AHTN and HHCB-lactone. Journal of Environmental Monitoring, 7(1), 43-51.
[18] Peck, A. M., & Hornbuckle, K. C. (2004). Synthetic musk fragrances in Lake Michigan. Environmental science & technology, 38(2), 367-372.
[19] Ricking, M., Schwarzbauer, J., Hellou, J., Svenson, A., & Zitko, V. (2003). Polycyclic aromatic musk compounds in sewage treatment plant effluents of Canada and Sweden––first results. Marine Pollution Bulletin, 46(4), 410-417.
[20] Wang, Y. Z. (2009) In microwave-assisted headspace solid phase micro extraction extracting water sample polycyclic musk compounds. Chemistry department of National Central University Master thesis.
[21] Regulation (EC) No. 1223/2009
[22] EU REACH (http://echa.europa.eu/regulations)
[23] Sommer, C. (2004). The role of musk and musk compounds in the fragrance industry. In Series Anthropogenic Compounds (pp. 1-16). Springer Berlin Heidelberg.
[24] Food and Drug Administration, Ministry of Health and Welfare
[25] Simonich, S. L., Begley, W. M., Debaere, G., & Eckhoff, W. S. (2000). Trace analysis of fragrance materials in wastewater and treated wastewater.Environmental science & technology, 34(6), 959-965.

[26] Lee, H. B., Peart, T. E., & Sarafin, K. U. R. T. I. S. (2003). Occurrence of polycyclic and nitro musk compounds in Canadian sludge and wastewater samples. Water quality research journal of Canada, 38(4), 683-702.
[27] Kanda, R., Griffin, P., James, H. A., & Fothergill, J. (2003). Pharmaceutical and personal care products in sewage treatment works. Journal of Environmental Monitoring, 5(5), 823-830.
[28] Zeng, X., Sheng, G., Xiong, Y., & Fu, J. (2005). Determination of polycyclic musks in sewage sludge from Guangdong, China using GC–EI-MS.Chemosphere, 60(6), 817-823.
[29] Winkler, M., Kopf, G., Hauptvogel, C., & Neu, T. (1998). Fate of artificial musk fragrances associated with suspended particulate matter (SPM) from the River Elbe (Germany) in comparison to other organic contaminants. Chemosphere,37(6), 1139-1156.
[30] Burkhardt, M. R., Zaugg, S. D., Burbank, T. L., Olson, M. C., & Iverson, J. L. (2005). Pressurized liquid extraction using water/isopropanol coupled with solid-phase extraction cleanup for semivolatile organic compounds, polycyclic aromatic hydrocarbons (PAH), and alkylated PAH homolog groups in sediment.Analytica chimica acta, 549(1), 104-116.
[31]Gatermann, R., Hellou, J., Hühnerfuss, H., Rimkus, G., & Zitko, V. (1999). Polycyclic and nitro musks in the environment: A comparison between Canadian and European aquatic biota. Chemosphere, 38(14), 3431-3441.
[32] Llompart, M., Garcı́a-Jares, C., Salgado, C., Polo, M., & Cela, R. (2003). Determination of musk compounds in sewage treatment plant sludge samples by solid-phase microextraction. Journal of Chromatography A, 999(1), 185-193.
[33] Homem, V., Avelino Silva, J., Cunha, C., Alves, A., & Santos, L. (2013). New analytical method for the determination of musks in personal care products by Quick, Easy, Cheap, Effective, Rugged, and Safe extraction followed by GC–MS. Journal of separation science, 36(13), 2176-2184.
[34] Risticevic, S., Lord, H., Górecki, T., Arthur, C. L., & Pawliszyn, J. (2010).
Protocol for solid-phase microextraction method development. Nature protocols, 5(1), 122-139.
[35] Alvarez-Rivera, G., Vila, M., Lores, M., Garcia-Jares, C., & Llompart, M. (2014). Development of a multi-preservative method based on solid-phase microextraction–gas chromatography–tandem mass spectrometry for cosmetic analysis. Journal of Chromatography A, 1339, 13-25.

[36] ISO 12787 (2011). Cosmetics - Analytical methods -Validation criteria for analytical results using chromatographic techniques. International standard
[37] Wang, I. T. I., Cheng, S. F., & Tsai, S. W. (2014). Determinations of airborne synthetic musks by polyurethane foam coupled with triple quadrupole gas chromatography tandem mass spectrometer. Journal of Chromatography A,1330, 61-68.
[38] MDL
[39] Nakata, H., Hinosaka, M., & Yanagimoto, H. (2015). Macrocyclic-, polycyclic-, and nitro musks in cosmetics, household commodities and indoor dusts collected from Japan: Implications for their human exposure. Ecotoxicology and environmental safety, 111, 248-255.
[40] McGinty, D., Letizia, C. S., & Api, A. M. (2011). Fragrance material review on ethylene brassylate. Food and Chemical Toxicology, 49, S174-S182
[41] Slanina, P. (2004). Risk evaluation of dietary and dermal exposure to musk fragrances. In Series Anthropogenic Compounds (pp. 281-310). Springer Berlin Heidelberg.
[42] Lin, W.T. (2013) Determinations of 1, 1, 1-Trichlorothane, 1,4-Dioxan, and Phthalates in water simultaneously by Solid phase microextraction. Graduate Institute of Environmental Health Colleague of Public Health, National Taiwan University. Master thesis.
[43] Lu, Y., Yuan, T., Wang, W., & Kannan, K. (2011). Concentrations and assessment of exposure to siloxanes and synthetic musks in personal care products from China. Environmental Pollution, 159(12), 3522-3528.
[44] Zhang, X., Yao, Y., Zeng, X., Qian, G., Guo, Y., Wu, M. & Fu, J. (2008). Synthetic musks in the aquatic environment and personal care products in Shanghai, China. Chemosphere, 72(10), 1553-1558.
[45] Roosens, L., Covaci, A., & Neels, H. (2007). Concentrations of synthetic musk compounds in personal care and sanitation products and human exposure profiles through dermal application. Chemosphere, 69(10), 1540-1547.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top