跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 10:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張瑞昕
研究生(外文):Jui-Shin Chang
論文名稱:石斑魚熱休克同源蛋白 70 與電壓依賴性陰離子通道蛋白 2 在 神經性壞死症病毒感染中的角色
論文名稱(外文):Roles of grouper heat shock cognate protein 70 and voltage-dependent anion selective channel protein 2 in NNV infection in vitro
指導教授:齊肖琪齊肖琪引用關係
指導教授(外文):Shau-Chi Chi
口試委員:林全信王俊順邱品文陳歷歷
口試委員(外文):Chan-Shing LinChun-Shun WangPinwen-Peter ChiouLi-Li Chen
口試日期:2015-06-01
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:113
中文關鍵詞:神經壞死症病毒石斑魚鰭細胞株 GF-1石斑魚熱休克同源蛋白質70石斑魚電壓性陰離子通道蛋白質2病毒受體細胞凋亡
外文關鍵詞:Nervous necrosis virus (NNV)grouper fin cell line GF-1grouper heat shock cognate protein 70 (GHSC70)grouper voltage-dependent anion selective channel protein 2 (GVDAC2)viral receptorapoptosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
神經性壞死症病毒(nervous necrosis virus, NNV)是世界多種海水養殖魚的重要病 原,感染魚的高死亡率已造成許多海水養殖魚業嚴重損失。此病毒分類上屬於野田病毒科 (Nodaviridae),β 野田病毒屬(betanodavirus),為不具封套膜正二十面體病毒顆粒,具 二段正意單股核糖核酸(positive sense single strand RNA)。關於此病毒感染機制的相關文 獻仍有限,且尚未找到感染宿主之專一性受體蛋白質。在本論文第二章,利用病毒蛋白疊合 試驗(virus overlay protein binding assay, VOPBA),初步篩選出 GF-1 細胞膜系蛋白中能與 NNV 交互作用的蛋白質,其中包括石斑魚熱休克同源蛋白 70(grouper heat shock cognate protein 70, GHSC70)與石斑魚電壓依賴性陰離子通道蛋白 2(grouper voltage-dependent anion selective channel protein 2, GVDAC2)。將這兩種蛋白質基因解碼後,設計專一性小片 段干擾 RNA(Small interfering RNA, siRNA)分別抑制其基因表現,再感染 NNV,結果病 毒 RNA2 基因複製量明顯減少,說明這兩個蛋白對 NNV 感染或複製過程有影響 。經由免 疫沉澱實驗,發現 GHSC70 與 NNV 外鞘有交互作用,但 GVDAC2 則無。經螢光免疫染色 及流式細胞儀分析, GHSC70 可存在 GF-1 細胞膜上,且與吸附細胞後的 NNV 位置重疊。 最後以 GHSC70 抗血清預先處理 GF-1 細胞後再感染 NNV,可顯著降低細胞內病毒量。因 此證明,GHSC70 在 NNV 感染進入 GF-1 細胞過程中扮演著重要的角色,推測為 NNV 感染 宿主細胞的受體之一。論文第三章則探討 GVDAC2 在 NNV 感染過程中扮演角色。NNV 感 染並不影響 GF-1 細胞中 GVDAC2 基因表現量的大幅改變。細胞免疫染色結果顯示, GVDAC2 和 NNV RNA 聚合酶皆座落於粒腺體上,但免疫沉澱結果顯示此兩蛋白質並無直 接交互作用。以 siRNA 抑制細胞 GVDAC2 表現後,細胞中 ATP 量顯著下降;NNV 在感染 GVDAC2 表現量受到抑制的 GF-1 細胞後,NNV 誘發的細胞凋亡時程會延後。因此認為, GVDAC2 在 NNV 感染細胞過程中,對維持細胞中 ATP 量以及感染後期病毒誘發細胞凋亡 的時程具有重要性。

Nervous necrosis virus (NNV) is a devastating pathogen of cultured marine fish, and has affected more than 40 fish species. NNV belongs to the betanodavirus of Nodaviridae and is a non- enveloped icosahedral particle with 2 single-stranded positive-sense RNAs. To date, the knowledge regarding NNV entry into the host cell remains limited, and no NNV-specific receptor protein has been published. In Chapter 2, we using grouper fin cell line GF-1 and purified NNV capsid protein in a virus overlay protein binding assay (VOPBA), grouper heat-shock cognate protein 70 (GHSC70) and grouper voltage-dependent anion selective channel protein 2 (GVDAC2) were presumably to be NNV receptor protein candidates. We cloned, sequenced, and expressed the genes of GHSC70 and GVDAC2 in Escherichia coli for anti-serum preparation. The expression knockdown of GHSC70 and GVDAC2 genes with specific short interfering RNA (siRNA) significantly downregulated viral RNA expression in NNV-infected GF-1 cells. After an immuno- precipitation assay, we confirmed that GHSC70 interacted with NNV capsid protein, while VDAC2 did not. Immunofluorescence staining and flow cytometry analysis revealed the GHSC70 protein on the cell surface. After a blocking assay, we detected the NNV RNA2 level after 1 h of adsorption to GF-1 cells, which was significantly lower in the cells pretreated with the GHSC70 antiserum than in non-treated cells. Therefore, we suggest that GHSC70 participates in the NNV entry of GF-1 cells, likely functions as NNV receptor or co-receptor protein. In Chapter 3, we investigated its role in the NNV infection. NNV infection did not considerably affect GVDAC2 gene expression. After performing immunostaining, we detected GVDAC2 at the mitochondrial membrane and GVDAC2 was colocalized with NNV-RNA-dependent RNA polymerase. However, these 2 proteins did not interact with each other in immunoprecipitation assay. The cellular ATP level in GVDAC2- downregulated cells was lower than that in control cells, and NNV-induced apoptosis was delayed in GVDAC2-siRNA-transfected cells. Therefore, we suggest that GVDAC2 is required for NNV infection for maintaining the cellular ATP level and had positive impact on virus-induced apoptosis.

中文摘要.........................................................................................................................I
Abstract..........................................................................................................................II
Contents…………...…………………………………………………………………IV

Chapter 1. Literature review
1.1. Viral nervous necrosis disease..............................................................................1
1.1.1. History of viral nervous necrosis disease.............................................................1
1.1.2. Clinical signs and histopathological characteristics.............................................1
1.2. Nervous necrosis virus..........................................................................................3
1.2.1. Characteristics of nervous necrosis virus.............................................................3
1.2.2. Taxonomy and phylogeny....................................................................................3
1.2.3 Transmission and control......................................................................................4
1.3. Aim of this study....................................................................................................6

Chapter 2. GHSC70 is involved in the cellular entry of NNV
2.1 Introduction............................................................................................................7
2.2 Materials and methods...........................................................................................8
2.2.1 Cells, virus and NNV-specific antibodies.............................................................8
2.2.2 Virus overlay protein binding assay (VOPBA) ....................................................8
2.2.3 Mass spectrometry analysis...................................................................................9
2.2.4 Cloning of GFMP fragment..................................................................................9
2.2.5 RACE cloning of full-length GFMP cDNAs......................................................10
2.2.6 RNA interference (RNAi) knockdown of GHSC70 or GVDAC2......................11
2.2.7 Real-time RT-PCR..............................................................................................12
2.2.8 Preparation of rabbit antiserum against GHSC70 and GVDAC2.......................12
2.2.9 Western blotting..................................................................................................13
2.2.10 Immunoprecipitation (IP) assay........................................................................13
2.2.11 Immuno-fluorescence staining..........................................................................14
2.2.12 Flow cytometry analysis....................................................................................14
2.2.13 Blocking assay...................................................................................................15
2.3 Results...................................................................................................................16
2.3.1 Identification of GF-1 cell membrane proteins bound with NNV......................16
2.3.2 Cloning and characterization of the GHSC70 and GVDAC2 genes of GF-1 cells.....................................................................................................................16
2.3.3 Knockdown of GHSC70 or GVDAC2 reduced the NNV RNA2 level..............17
2.3.4 GHSC70 immunoprecipitated with NNV capsid protein....................................17
2.3.5 GHSC70 was detectable on the GF-1 cell surface and co-localized with NNV....................................................................................................................18
2.3.6 GHSC70-specific antiserum could block NNV entry into GF-1 cells................19

Chapter 3 GVDAC2 is required for nervous necrosis virus infection
3.1 Introduction..........................................................................................................20
3.2 Materials and methods.........................................................................................22
3.2.1 Virus, cells, and antibodies.................................................................................22
3.2.2 GVDAC2 RNA knockdown................................................................................22
3.2.3 Real-time RT-PCR..............................................................................................22
3.2.4 Western blotting..................................................................................................23
3.2.5 Immunoprecipitation assay.................................................................................23
3.2.6 Immunofluorescence staining.............................................................................24
3.2.7 Cellular ATP level measurement........................................................................24
3.2.8 Apoptosis analysis...............................................................................................25
3.3 Results...................................................................................................................26
3.3.1 NNV infection did not considerably affect GVDAC2 gene expression.............26
3.3.2 GVDAC2-knockdown reduced NNV RNA2 levels and titers in GF-1 cells......26
3.3.3 GVDAC2 was located at mitochondria and colocalized with NNV RdRp.........26
3.3.4 GVDAC2 did not immunoprecipitate with NNV RdRp.....................................27
3.3.5 Cellular ATP level decreased in GVDAC2-knockdown GF-1 cells...................27
3.3.6 GVDAC2-knockdown delayed NNV-induced apoptosis in GF-1 cells..............27
4. Discussion................................................................................................................29
5. Conclusions and Perspectives................................................................................33
5.1 GHSC70 is involved in NNV entry........................................................................33
5.2 The role of GVDAC2 in NNV infection................................................................34
6. References...............................................................................................................35
Tables..........................................................................................................................50
Figures and legends....................................................................................................54
Appendix.....................................................................................................................75
Journal paper publication records...........................................................................76
Conference and contest publication records............................................................77
Awards........................................................................................................................78
Published journal papers...........................................................................................81

Content of tables
Table 1. Primers and siRNAs used in this study..........................................................50
Table 2. Analysis of GFMPs by LC-MS/MS and MASCOT program........................51
Table 3. Amino acid sequence identity between GHSC70 (NCBI accession no. JX207115) and HSC70 of other species......................................................52
Table 4. Amino acid sequence identity between GVDAC2 (NCBI accession no. JX207116) and VDAC2 of other species....................................................53


Contents of figures
Fig. 1. Detection of GF-1 cell membrane proteins (GFMPs) with interactivity with NNV capsid protein by VOPBA assay..........................................................54
Fig. 2. Complete gene sequence of GHSC70...............................................................55
Fig. 3. Complete gene sequence of GVDAC2.............................................................57
Fig. 4. Phylogenetic trees of (A) HSC70 family and (B) VDAC2 family of different organisms using neighbor-joining method.....................................................59
Fig. 5. The siRNA down-regulation of GHSC70 and GVDAC2 gene expression on NNV replication.............................................................................................60
Fig. 6. Specificities of rabbit anti-GHSC70 and anti-GVDAC2 polyclonal antibodies.......................................................................................................61
Fig. 7. Immunoprecipitation of NNV capsid protein with GHSC70 and GVDAC2...62
Fig. 8. Detection of grouper actin of GF-1 cells by immunostaining using actin-specific antibodies..........................................................................................63
Fig. 9. Detection of GHSC70 distribution of GF-1 cells by immunostaining and flow cytometry.......................................................................................................64
Fig. 10. Localization of GHSC70 and NNV analyzed by immuno-fluorescence staining...........................................................................................................65
Fig. 11. Blocking assay of NNV entry.........................................................................66
Fig. 12. Real-time PCR analysis of (A) GVDAC2 and (B) NNV RNA2 gene expression levels during NNV infection........................................................67
Fig. 13. The siRNA downregulation of GVDAC2 protein expression........................68
Fig. 14. NNV RNA expression levels and titers in GVDAC2-knockdown GF-1 cells................................................................................................................69
Fig. 15. Localization of GVDAC2, mitochondria and NNV according to immunofluorescence staining........................................................................70
Fig. 16. Immunoprecipitation of GVDAC2 with NNV RdRp.....................................71
Fig. 17. Cellular ATP levels in GVDAC2-knockdown cells and NNV-infected cells................................................................................................................72
Fig. 18. Progression of NNV-induced apoptosis in GF-1 cells....................................73
Fig. 19. Progression of NNV-induced apoptosis in GVDAC2-knockdown GF-1 cells................................................................................................................74


1.Yoshikoshi K, Inoue K. 1990. Viral Nervous Necrosis in Hatchery-Reared Larvae and Juveniles of Japanese Parrotfish, Oplegnathus-Fasciatus (Temminck and Schlegel). J Fish Dis 13:69–77.
2.Munday B, Kwang J, Moody N. 2002. Betanodavirus infections of teleost fish: a review. J Fish Dis 25:127–142.
3.Nishizawa T, Furuhashi M, Nagai T, Nakai T, Muroga K. 1997. Genomic classification of fish nodaviruses by molecular phylogenetic analysis of the coat protein gene. Appl Environ Microbiol 63:1633–1636.
4.Chi SC, Shieh JR, Lin SJ. 2003. Genetic and antigenic analysis of betanodaviruses isolated from aquatic organisms in Taiwan. Dis Aquat Org 55:221–228.
5.Shetty M, Maiti B, Shivakumar Santhosh K, Venugopal MN, Karunasagar I. 2012. Betanodavirus of marine and freshwater fish: distribution, genomic organization, diagnosis and control measures. Indian J Virol 23:114–123.
6.Azad IS, Shekhar MS, Thirunavukkarasu AR, Poornima M, Kailasam M, Rajan JJS, Ali SA, Abraham M, Ravichandran P. 2005. Nodavirus infection causes mortalities in hatchery produced larvae of Lates calcarifer: first report from India. Dis Aquat Org 63:113–118.
7.Fukuda Y, Nguyen HD, Furuhashi M, Nakai T. 1996. Mass Mortality of Cultured Sevenband Grouper, Epinephelus septemfasciatus, Associated with Viral Nervous Necrosis. Fish Pathol 31:165–170.
8.Furusawa R, Okinaka Y, Nakai T. 2006. Betanodavirus infection in the freshwater model fish medaka (Oryzias latipes). J Gen Virol 87:2333–2339.
9.Grotmol S, Bergh O, Totland GK. 1999. Transmission of viral encephalopathy and retinopathy (VER) to yolk-sac larvae of the Atlantic halibut Hippoglossus hippoglossus: occurrence of nodavirus in various organs and a possible route of infection. Dis Aquat Org 36:95–106.
10.Johansen R, Sommerset I, Torud B, Korsnes K, Hjortaas MJ, Nilsen F, Nerland AH, Dannevig BH. 2004. Characterization of nodavirus and viral encephalopathy and retinopathy in farmed turbot, Scophthalmus maximus (L.). J Fish Dis 27:591–601.
11.MAENO Y, DE LA PENA LD, CRUZ-LACIERDA ER. 2004. Mass Mortalities Associated with Viral Nervous Necrosis in Hatchery-Reared Sea Bass Lates calcarifer in the Philippines. JARQ-Jpn Agr Res Q 38:69–73.
12.Parameswaran V, Kumar SR, Ahmed VPI, Hameed ASS. 2008. A fish nodavirus associated with mass mortality in hatchery-reared Asian Sea bass, Lates calcarifer. Aquaculture 275:366–369.
13.Ransangan J, Manin BO. 2010. Mass mortality of hatchery-produced larvae of Asian seabass, Lates calcarifer (Bloch), associated with viral nervous necrosis in Sabah, Malaysia. Vet Microbiol 145:153–157.
14.Thiery R, Raymond J-C, Castric J. 1999. Natural outbreak of viral encephalopathy and retinopathy in juvenile sea bass, Dicentrarchus labrax: study by nested reverse transcriptase–polymerase chain reaction. Virus Res 63:11–17.
15.Bovo G, Nishizawa T, Maltese C, Borghesan F, Mutinelli F, Montesi F, De Mas S. 1999. Viral encephalopathy and retinopathy of farmed marine fish species in Italy. Virus Res 63:143–146.
16.Breuil G, Bonami J-R, Pepin JF, Pichot Y. 1991. Viral infection (picorna-like virus) associated with mass mortalities in hatchery-reared sea-bass (Dicentrarchus labrax) larvae and juveniles. Aquaculture 97:109–116.
17.Chua FHC, Ng ML, Ng KL, LOO JJ, Wee JY. 1994. Investigation of outbreaks of a novel disease, “Sleepy Grouper Disease,” affecting the brown‐spotted grouper, Epinephelus tauvina Forskal. J Fish Dis 17:417–427.
18.Munday BL, Nakai T, Nguyen HD. 1994. Antigenic relationship of the picorna‐like virus of larval barramundi, Lates calcarifer Bloch to the nodavirus of larval striped jack, Pseudocaranx dentex (Bloch & Schneider). Aust Vet J 71:384–385.
19.Nguyen HD, Nakai T, Muroga K. 1996. Progression of striped jack nervous necrosis virus (SJNNV) infection in naturally and experimentally infected striped jack Pseudocaranx dentex larvae. Dis Aquat Org 24:99–105.
20.Grotmol S, Totland GK, Thorud K, Hjeltnes BK. 1997. Vacuolating encephalopathy and retinopathy associated with a nodavirus-like agent: a probable cause of mass mortality of cultured larval and juvenile Atlantic halibut Hippoglossus hippoglossus. Dis Aquat Org 29:85–97.
21.LeBreton A, Grisez L, Sweetman J, Ollevier F. 1997. Viral nervous necrosis (VNN) associated with mass mortalities in cage-reared sea bass, Dicentrarchus labrax (L). J Fish Dis 20:145–151.
22.Munday BL, Langdon JS, Hyatt A, Humphrey JD. 1992. Mass mortality associated with a viral-induced vacuolating encephalopathy and retinopathy of larval and juvenile barramundi, Lates calcarifer Bloch. Aquaculture 103:197–211.
23.Boonyaratpalin S, Supamattaya K, KASORNCHANDRA J, HOFFMANN RW. 1996. Picorna-like virus associated with mortality and a spongious encephalopathy in grouper Epinephelus malabaricus. Dis Aquat Org 26:75–80.
24.Glazebrook JS, Heasman MP, Debeer SW. 1990. Picorna-Like Viral Particles Associated with Mass Mortalities in Larval Barramundi, Lates-Calcarifer Bloch. J Fish Dis 13:245–249.
25.Mori K, Nakai T, Muroga K, Arimoto M, Mushiake K, Furusawa I. 1992. Properties of a new virus belonging to nodaviridae found in larval striped jack (Pseudocaranx dentex) with nervous necrosis. Virology 187:368–371.
26.Chi S, Lo C, Kou G, Chang P, Peng S, Chen S. 1997. Mass mortalities associated with viral nervous necrosis (VNN) disease in two species of hatchery‐reared grouper, Epinephelus fuscogutatus and Epinephelus akaara (Temminck & Schlegel). J Fish Dis 20:185–193.
27.Sommerset I, Nerland AH. 2004. Complete sequence of RNA1 and subgenomic RNA3 of Atlantic halibut nodavirus (AHNV). Dis Aquat Org 58:117–125.
28.Chen L-J, Su Y-C, Hong J-R. 2009. Betanodavirus non-structural protein B1: A novel anti-necrotic death factor that modulates cell death in early replication cycle in fish cells. Virology 385:444–454.
29.Fenner BJ, Thiagarajan R, Chua HK, Kwang J. 2006. Betanodavirus B2 is an RNA interference antagonist that facilitates intracellular viral RNA accumulation. J Virol 80:85–94.
30.Su YC, Chiu HW, Hung JC, Hong JR. 2014. Beta-nodavirus B2 protein induces hydrogen peroxide production, leading to Drp1-recruited mitochondrial fragmentation and cell death via mitochondrial targeting. Apoptosis 19:1457–1470.
31.King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ. 2011. Virus Taxonomy. Elsevier.
32.Toffolo V, Negrisolo E, Maltese C, Bovo G, Belvedere P, Colombo L, Valle LD. 2007. Phylogeny of betanodaviruses and molecular evolution of their RNA polymerase and coat proteins. Mol Phylogenet Evol 43:298–308.
33.Olveira JG, Souto S, Dopazo CP, Thiery R, Barja JL, Bandin I. 2009. Comparative analysis of both genomic segments of betanodaviruses isolated from epizootic outbreaks in farmed fish species provides evidence for genetic reassortment. J Gen Virol 90:2940–2951.
34.Lopez-Jimena B, Cherif N, Garcia-Rosado E, Infante C, Cano I, Castro D, Hammami S, Borrego JJ, Alonso MC. 2010. A combined RT-PCR and dot-blot hybridization method reveals the coexistence of SJNNV and RGNNV betanodavirus genotypes in wild meagre (Argyrosomus regius). J Appl Microbiol 109:1361–1369.
35.Vendramin N, Patarnello P, Toffan A, Panzarin V, Cappellozza E, Tedesco P, Terlizzi A, Terregino C, Cattoli G. 2013. Viral Encephalopathy and Retinopathy in groupers (Epinephelus spp.) in southern Italy: a threat for wild endangered species? BMC Vet Res 9:20.
36.Mushiake K, Nishizawa T, Nakai T, Furusawa I, Muroga K. 1994. Control of VNN in striped jack - selection of spawners based on the detection of SJNNV gene by polymerase chain-reaction (PCR). Fish Pathol 29:177–182.
37.Breuil G, Pepin JF, Castric J, Fauvel C, Thiery R. 2000. Detection of serum antibodies against nodavirus in wild and farmed adult sea bass: Application to the screening of broodstock in sea bass hatcheries. Bull Eur Ass Fish Pathol 20:95–100.
38.Watanabe K, Nishizawa T, Yoshimizu M. 2000. Selection of brood stock candidates of barfin flounder using an ELISA system with recombinant protein of barfin flounder nervous necrosis virus. Dis Aquat Org 41:219–223.
39.Arimoto M, Sato J, Maruyama K, Mimura G, Furusawa I. 1996. Effect of chemical and physical treatments on the inactivation of striped jack nervous necrosis virus (SJNNV). Aquaculture 143:15–22.
40.Breuil G, Pepin J, Boscher S, Thiery R. 2002. Experimental vertical transmission of nodavirus from broodfish to eggs and larvae of the sea bass, Dicentrarchus labrax (L.). J Fish Dis 25:697–702.
41.Grotmol S, Totland GK. 2000. Surface disinfection of Atlantic halibut Hippoglossus hippoglossus eggs with ozonated sea-water inactivates nodavirus and increases survival of the larvae. Dis Aquat Org 39:89–96.
42.Munday BL, Nakai T. 1997. Nodaviruses as pathogens in larval and juvenile marine finfish. World J Microb Biot 13:375–381.
43.Kai Y-H, Chi S-C. 2008. Efficacies of inactivated vaccines against betanodavirus in grouper larvae (Epinephelus coioides) by bath immunization. Vaccine 26:1450–1457.
44.Kai Y-H, Su H-M, Tai K-T, Chi S-C. 2010. Vaccination of grouper broodfish (Epinephelus tukula) reduces the risk of vertical transmission by nervous necrosis virus. Vaccine 28:996–1001.
45.Chia T-J, Wu Y-C, Chen J-Y, Chi S-C. 2010. Antimicrobial peptides (AMP) with antiviral activity against fish nodavirus. Fish Shellfish Immun 28:434–439.
46.Wang Y-D, Kung C-W, Chen J-Y. 2010. Antiviral activity by fish antimicrobial peptides of epinecidin-1 and hepcidin 1-5 against nervous necrosis virus in medaka. Peptides 31:1026–1033.
47.Oh M-J, Takami I, Nishizawa T, Kim W-S, Kim C-S, Kim S-R, Park M-A. 2012. Field tests of Poly(I:C) immunization with nervous necrosis virus (NNV) in sevenband grouper, Epinephelus septemfasciatus (Thunberg). J Fish Dis 35:187–191.
48.Kuan Y-C, Sheu F, Lee G-C, Tsai M-W, Hung C-L, Nan F-H. 2012. Administration of recombinant Reishi immunomodulatory protein (rLZ-8) diet enhances innate immune responses and elicits protection against nervous necrosis virus in grouper Epinephelus coioides. Fish Shellfish Immun 32:986–993.
49.Wu Y-C, Lu Y-F, Chi S-C. 2010. Anti-viral mechanism of barramundi Mx against betanodavirus involves the inhibition of viral RNA synthesis through the interference of RdRp. Fish Shellfish Immun 28:467–475.
50.Lu M-W, Chao Y-M, Guo T-C, Santi N, Evensen O, Kasani SK, Hong J-R, Wu J-L. 2008. The interferon response is involved in nervous necrosis virus acute and persistent infection in zebrafish infection model. Mol Immunol 45:1146–1152.
51.Ohta T, Ueda Y, Ito K, Miura C, Yamashita H, Miura T, Tozawa Y. 2011. Anti-viral effects of interferon administration on sevenband grouper, Epinephelus septemfasciatus. Fish Shellfish Immun 30:1064–1071.
52.Chen S-P, Yang H-L, Her GM, Lin H-Y, Jeng M-F, Wu J-L, Hong J-R. 2006. Betanodavirus induces phosphatidylserine exposure and loss of mitochondrial membrane potential in secondary necrotic cells, both of which are blocked by bongkrekic acid. Virology 347:379–391.
53.Kalia M, Jameel S. 2009. Virus entry paradigms. Amino Acids 41:1147–1157.
54.Mendelsohn CL, Wimmer E, Racaniello VR. 1989. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56:855–865.
55.Bergelson JM, Shepley MP, Chan BM, Hemler ME, Finberg RW. 1992. Identification of the integrin VLA-2 as a receptor for echovirus 1. Science 255:1718–1720.
56.Roelvink PW, Lizonova A, Lee JG, Li Y, Bergelson JM, Finberg RW, Brough DE, Kovesdi I, Wickham TJ. 1998. The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J Virol 72:7909–7915.
57.Sritunyalucksana K, Wannapapho W, Lo CF, Flegel TW. 2006. PmRab7 Is a VP28-Binding Protein Involved in White Spot Syndrome Virus Infection in Shrimp. J Virol 80:10734–10742.
58.Li D-F, Zhang M-C, Yang H-J, Zhu Y-B, Xu X. 2007. β-integrin mediates WSSV infection. Virology 368:122–132.
59.Orpetveit I, Gjoen T, Sindre H, Dannevig BH. 2008. Binding of infectious pancreatic necrosis virus (IPNV) to membrane proteins from different fish cell lines. Arch Virol 153:485–493.
60.Iwamoto T, Okinaka Y, Mise K, Mori KI, Arimoto M, Okuno T, Nakai T. 2004. Identification of host-specificity determinants in betanodaviruses by using reassortants between striped jack nervous necrosis virus and sevenband grouper nervous necrosis virus. J Virol 78:1256–1262.
61.Shieh J, Chi S. 2005. Production of monoclonal antibodies against grouper nervous necrosis virus (GNNV) and development of an antigen capture ELISA. Dis Aquat Org 63:53–60.
62.Liu W, Hsu C-H, Hong Y-R, Wu S-C, Wang C-H, Wu Y-M, Chao C-B, Lin C-S. 2005. Early endocytosis pathways in SSN-1 cells infected by dragon grouper nervous necrosis virus. J Gen Virol 86:2553–2561.
63.Chi S, Hu W, Lo B. 1999. Establishment and characterization of a continuous cell line (GF‐1) derived from grouper, Epinephelus coioides (Hamilton): a cell line susceptible to grouper nervous necrosis virus (GNNV). J Fish Dis 22:173–182.
64.Chi S, Lo B, Lin S. 2001. Characterization of grouper nervous necrosis virus (GNNV). J Fish Dis 24:3–13.
65.Towbin H, Staehelin T, Gordon J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354.
66.Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739.
67.Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675.
68.Chawla-Sarkar M, Lindner DJ, Liu YF, Williams B, Sen GC, Silverman RH, Borden EC. 2003. Apoptosis and interferons: Role of interferon-stimulated genes as mediators of apoptosis. Apoptosis 8:237–249.
69.Danial NN, Korsmeyer SJ. 2004. Cell death: critical control points. Cell 116:205–219.
70.Wajant H. 2002. The Fas signaling pathway: more than a paradigm. Science 296:1635–1636.
71.Allen DL, Linderman JK, Roy RR, Bigbee AJ, Grindeland RE, Mukku V, Edgerton VR. 1997. Apoptosis: a mechanism contributing to remodeling of skeletal muscle in response to hindlimb unweighting. Am J Physiol 273:C579–C587.
72.Madesh M, Antonsson B, Srinivasula SM, Alnemri ES, Hajnoczky G. 2002. Rapid kinetics of tBid-induced cytochrome c and Smac/DIABLO release and mitochondrial depolarization. J Biol Chem 277:5651–5659.
73.Ferri KF, Kroemer G. 2001. Organelle-specific initiation of cell death pathways. Nat Cell Biol 3:E255–E263.
74.Farrow SN, Brown R. 1996. New members of the Bcl-2 family and their protein partners. Curr Opin Genet Dev 6:45–49.
75.Ma S, Hockings C, Anwari K, Kratina T, Fennell S, Lazarou M, Ryan MT, Kluck RM, Dewson G. 2013. Assembly of the bak apoptotic pore: a critical role for the bak protein 6 helix in the multimerization of homodimers during apoptosis. J Biol Chem 288:26027–26038.
76.Hoogenboom BW, Suda K, Engel A, Fotiadis D. 2007. The supramolecular assemblies of voltage-dependent anion channels in the native membrane. J Mol Biol 370:246–255.
77.Cesar M de C, Wilson JE. 2004. All three isoforms of the voltage-dependent anion channel (VDAC1, VDAC2, and VDAC3) are present in mitochondria from bovine, rabbit, and rat brain. Arch Biochem Biophys 422:191–196.
78.Messina A, Reina S, Guarino F, De Pinto V. 2012. VDAC isoforms in mammals. Biochim Biophys Acta 1818:1466–1476.
79.Rostovtseva TK, Tan W, Colombini M. 2005. On the role of VDAC in apoptosis: fact and fiction. J Bioenerg Biomembr 37:129–142.
80.Wu S, Sampson MJ, Decker WK, Craigen WJ. 1999. Each mammalian mitochondrial outer membrane porin protein is dispensable: effects on cellular respiration. Biochim Biophys Acta 1452:68–78.
81.Roy SS, Ehrlich AM, Craigen WJ, Hajnoczky G. 2009. VDAC2 is required for truncated BID-induced mitochondrial apoptosis by recruiting BAK to the mitochondria. EMBO rep 10:1341–1347.
82.Ma SB, Nguyen TN, Tan I, Ninnis R, Iyer S, Stroud DA, Menard M, Kluck RM, Ryan MT, Dewson G. 2014. Bax targets mitochondria by distinct mechanisms before or during apoptotic cell death: a requirement for VDAC2 or Bak for efficient Bax apoptotic function. Cell Death Differ 21:1925–1935.
83.De Pinto V, Guarino F, Guarnera A, Messina A, Reina S, Tomasello FM, Palermo V, Mazzoni C. 2010. Characterization of human VDAC isoforms: a peculiar function for VDAC3? Biochim Biophys Acta 1797:1268–1275.
84.Gincel D, Zaid H, Shoshan-Barmatz V. 2001. Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function. Biochem J 358:147–155.
85.Regenold WT, Pratt M, Nekkalapu S, Shapiro PS, Kristian T, Fiskum G. 2012. Mitochondrial detachment of hexokinase 1 in mood and psychotic disorders: implications for brain energy metabolism and neurotrophic signaling. J Psychiatr Res 46:95–104.
86.Rostovtseva TK, Bezrukov SM. 1998. ATP transport through a single mitochondrial channel, VDAC, studied by current fluctuation analysis. Biophys J 74:2365–2373.
87.Zamarin D, Garcia-Sastre A, Xiao X, Wang R, Palese P. 2005. Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1. PLoS Pathog 1:e4.
88.Feng X, Ching CB, Chen WN. 2012. EBV up-regulates cytochrome c through VDAC1 regulations and decreases the release of cytoplasmic Ca2+ in the NPC cell line. Cell Biol Int 36:733–738.
89.Li Z, Wang Y, Xue Y, Li X, Cao H, Zheng SJ. 2012. Critical role for voltage-dependent anion channel 2 in infectious bursal disease virus-induced apoptosis in host cells via interaction with VP5. J Virol 86:1328–1338.
90.Shi Y, Zhao Z, Hong X, Chen K, Zhu X. 2014. Characterization and functional analysis of voltage-dependent anion channel 1 (VDAC1) from orange-spotted grouper (Epinephelus coioides). J Biochem Mol Toxicol 28:292–301.
91.Chang J-S, Chi S-C. 2015. GHSC70 Is Involved in the Cellular entry of nervous necrosis virus. J Virol 89:61–70.
92.Colombini M. 2004. VDAC: The channel at the interface between mitochondria and the cytosol. Mol Cell Biochem 256:107–115.
93.Wu H-C, Wu J-L, Chu H-L, Su Y-C, Hong J-R. 2010. RGNNV induces mitochondria-mediated cell death via newly synthesized protein dependent pathway in fish cells. Fish Shellfish Immun 29:451–463.
94.Plotz M, Gillissen B, Hossini AM, Daniel PT, Eberle J. 2012. Disruption of the VDAC2-Bak interaction by Bcl-x(S) mediates efficient induction of apoptosis in melanoma cells. Cell Death Differ 19:1928–1938.
95.Cheng E, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ. 2003. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301:513–517.
96.Gonzalez-Reyes S, Garcia-Manso A, del Barrio G, Dalton KP, Gonzalez-Molleda L, Arrojo-Fernandez J, Nicieza I, Parra F. 2009. Role of annexin A2 in cellular entry of rabbit vesivirus. J Gen Virol 90:2724–2730.
97.Li X, Bangari DS, Sharma A, Mittal SK. 2009. Bovine adenovirus serotype 3 utilizes sialic acid as a cellular receptor for virus entry. Virology 392:162–168.
98.Das S, Laxminarayana SV, Chandra N, Ravi V, Desai A. 2009. Heat shock protein 70 on Neuro2a cells is a putative receptor for Japanese encephalitis virus. Virology 385:47–57.
99.Hightower LE. 1991. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66:191–197.
100.Goldfarb SB, Kashlan OB, Watkins JN, Suaud L, Yan W, Kleyman TR, Rubenstein RC. 2006. Differential effects of Hsc70 and Hsp70 on the intracellular trafficking and functional expression of epithelial sodium channels. Proc Natl Acad Sci USA 103:5817–5822.
101.Shiota M, Kusakabe H, Izumi Y, Hikita Y, Nakao T, Funae Y, Miura K, Iwao H. 2010. Heat shock cognate protein 70 is essential for Akt signaling in endothelial function. Arterioscler Thromb Vasc Biol 30:491–497.
102.Cripe TP, Delos SE, Estes PA, Garcea RL. 1995. In vivo and in vitro association of hsc70 with polyomavirus capsid proteins. J Virol 69:7807–7813.
103.Parent R, Qu X, Petit M-A, Beretta L. 2009. The heat shock cognate protein 70 is associated with hepatitis C virus particles and modulates virus infectivity. Hepatology 49:1798–1809.
104.Reyes-del Valle J, Chavez-Salinas S, Medina F, del Angel RM. 2005. Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79:4557–4567.
105.Guerrero CA, Bouyssounade D, Zarate S, Iša P, Lopez T, Espinosa R, Romero P, Mendez E, Lopez S, Arias CF. 2002. Heat shock cognate protein 70 is involved in rotavirus cell entry. J Virol 76:4096–4102.
106.Ojima N, Yamashita M, Watabe S. 2005. Quantitative mRNA expression profiling of heat-shock protein families in rainbow trout cells. Biochem Bioph Res Co 329:51–57.
107.Zhang A, Zhou X, Wang X, Zhou H. 2011. Characterization of two heat shock proteins (Hsp70/Hsc70) from grass carp (Ctenopharyngodon idella): evidence for their differential gene expression, protein synthesis and secretion in LPS-challenged peripheral blood lymphocytes. Comp Biochem Physiol B, Biochem Mol Biol 159:109–114.
108.Deane EE, Woo NYS. 2004. Differential gene expression associated with euryhalinity in sea bream (Sparus sarba). Am J Physiol Regul Integr Comp Physiol 287:R1054–63.
109.Cole T, Awni LA, Nyakatura E, Gotz H, Walter G, Thinnes FP, Hilschmann N. 1992. Studies on human porin. VIII. Expression of “Porin 31HL” channels in the plasmalemma of the acute-lymphoblastic-leukemia cell line KM3 as revealed by light- and electron-microscopy. Biol Chem Hoppe Seyler 373:891–896.
110.Puchelle E, Jacquot J, Fuchey C, Burlet H, Klossek JM, Gilain L, Triglia JM, Thinnes FP, Hilschmann N. 1993. Studies on human porin. IX. Immunolocalization of porin and CFTR channels in human surface respiratory epithelium. Biol Chem Hoppe Seyler 374:297–304.
111.Dermietzel R, Hwang TK, Buettner R, Hofer A, Dotzler E, Kremer M, Deutzmann R, Thinnes FP, Fishman GI, Spray DC. 1994. Cloning and in situ localization of a brain-derived porin that constitutes a large-conductance anion channel in astrocytic plasma membranes. Proc Natl Acad Sci USA 91:499–503.
112.Moon JI, Jung YW, Ko BH, De Pinto V, Jin I, Moon IS. 1999. Presence of a voltage-dependent anion channel 1 in the rat postsynaptic density fraction. Neuroreport 10:443–447.
113.Liu M, Vakharia VN. 2006. Nonstructural protein of infectious bursal disease virus inhibits apoptosis at the early stage of virus infection. J Virol 80:3369–3377.
114.Shen X, Wang T, Xu D, Lu L. 2014. Proteomic identification, characterization and expression analysis of Ctenopharyngodon idella VDAC1 upregulated by grass carp reovirus infection. Fish Shellfish Immun 37:96–107.
115.Wang KCH-C, Kondo H, Hirono I, Aoki T. 2010. The Marsupenaeus japonicus voltage-dependent anion channel (MjVDAC) protein is involved in white spot syndrome virus (WSSV) pathogenesis. Fish Shellfish Immun 29:94–103.
116.Xu H-D, Su H-J, Zou W-B, Liu S-S, Yan W-R, Wang Q-Q, Yuan L-L, Chan SF, Yu X-Q, He J-G, Weng S-P. 2015. Identification of mud crab reovirus VP12 and its interaction with the voltage-dependent anion-selective channel protein of mud crab Scylla paramamosain. Fish Shellfish Immun 44:224–231.
117.Mezeth KB, Nylund S, Henriksen H, Patel S, Nerland AH, Szilvay AM. 2007. RNA-dependent RNA polymerase from Atlantic halibut nodavirus contains two signals for localization to the mitochondria. Virus Res 130:43–52.
118.Chang J-S, Chi S-C. 2015. Grouper voltage-dependent anion selective channel protein 2 is required for nervous necrosis virus infection. Fish Shellfish Immun 46:315–322.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top