跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/06 01:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄒亞璇
研究生(外文):Ya-Shuan Chou
論文名稱:人類唾液腺組織工程之研究:建立幹細胞與共培養系統
論文名稱(外文):Tissue Engineering of Human Salivary Gland: Stem Cells and Coculture System
指導教授:楊台鴻
指導教授(外文):Tai-Horng Young
口試委員:張志涵何美泠黃琮瑋鄭廖平
口試委員(外文):Chih-Han ChangMei-Ling HoTsung-Wei HuangLiao-Ping Cheng
口試日期:2015-07-21
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:98
中文關鍵詞:唾液腺腮腺組織工程纖維母細胞共培養系統
外文關鍵詞:salivary glandparotid glandtissue engineeringfibroblastcoculture
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
唾液腺是人體外分泌腺的一種,主要在掌管唾液的分泌,在分泌的唾液中,除了水分外還含有電解質、黏液、分泌蛋白、酵素與生長因子。唾液的功能在幫助吞嚥和消化食物,也可以維護口腔健康,因此唾液腺功能低下的患者其生活品質會受到很大的影響,唾液腺功能損失的原因很多,可能由自體免疫引起的唾液腺發炎和組織破壞,也可能因為接受醫療處理而導致,例如頭頸部腫瘤病患在進行放射線治療後,唾液腺功能會受到影響,這些病人因無充足的唾液分泌,常常會有口乾的症狀,伴隨吞嚥和消化困難、齲齒、吸收不良、口腔黏膜受損等症狀,對生活產生許多不便和健康的危害。然而,目前在醫學上並無有效的方法來治療放療引起的唾液腺損傷,藉由組織工程的方法重建新的唾液腺,是這些病人未來的希望。
組織工程的發展上,細胞層面是最基礎需解決的問題,因此在本研究中,分析唾液腺分泌細胞從腮腺組織分離培養過程中的變化,在培養至第14天可以取得高比例的唾液腺幹細胞。目前研究上,對幹細胞的篩選多用流式細胞儀針對特定表面抗體標記,或是利用創傷刺激幹細胞比例增加,在本研究中分析唾液腺細胞培養過程中,培養一至兩週的細胞,利用CD49f與CD90標記進行分析,幹細胞比例顯著上升,且進一步證實細胞具有乙醛脫氫酶1 (aldehyde dehydrogenase isoform 1, ALDH1)表現與分化能力。長期培養三至四週後,可以獲得穩定的唾液線分泌上皮細胞,並具有分泌細胞的水通道蛋白表現,但在培養四週的時間點下,培養的細胞無法經由誘導產生脂分化與骨分化,ALDH1、幹細胞表現的表面標的表現也隨之下降。蛋白質表現顯示剛開始貼附生長的細胞會喪失上皮細胞的特性,而隨著培養天期增加才逐漸恢復E-chadherin表現,推測此處理過程細胞經歷間質-上皮轉化(mesenchymal-epithelial transition, MET),在這項實驗中,證實了我們的培養系統中唾液腺幹細胞的存在,並且建立一個簡單的方法取得充足的唾液腺幹細胞以利組織工程應用。
隨著唾液腺分泌細胞在培養系統中的生長,功能的維持是下一階段的目標。已知間質細胞在組織的形成與發育過程中扮演著非常重要的角色,因此,要成功地利用組織工程技術建構人工唾液腺,間質細胞與分泌細胞間複雜的互動關係有其重要性。我們將分離出的分泌細胞與纖維母細胞進行共培養,並探討細胞彼此間之互動關係。研究中發現,分泌細胞與纖維母細胞進行直接的共培養於同一培養環境,分泌細胞會聚集為一個個細胞群落,而纖維母細胞圍繞在週邊,在這樣的生長情境下,分泌細胞所製造的唾液澱粉酶顯著上升,此上升幅度與纖維母細胞數目和分泌的basic fibroblast growth factor (bFGF)有關,分泌細胞受到此生長因子影響,刺激唾液澱粉酶製造。使用纖維母細胞的條件培養液也有相似的效果,更確立唾液澱粉酶製造受到纖維母細胞分泌的生長因子影響。除此之外,我們發現不同生醫材料對纖維母細胞的生長因子分泌亦有不同的影響,因而對影響分泌細胞製造唾液澱粉酶有不同程度的改變,其中針對一些不同特性的材料做研究,發現在這些材料中,纖維母細胞被聚偏氟乙烯(polyvinylidene fluoride, PVDF)調控後的條件培養液對分泌細胞產生的澱粉酶有最顯著的提升。由唾液腺分離出來的纖維母細胞在PVDF影響下,會產生部分神經營養因子neurotrophin-4 (NT-4),先前研究已知,神經發展在唾液腺發育中佔有重要的地位,在此PVDF調控的纖維母細胞條件培養液培養的分泌細胞,不但細胞內製造的唾液澱粉酶顯著上升,其分泌至細胞外的唾液澱粉酶活性亦有明顯增加。
細胞在體內環境中受到許多因子的調控,這是在離體環境中很難重現的,針對唾液腺分泌細胞與周圍的間質細胞研究,初步在成熟的分泌細胞培養環境中加入由周邊細胞主動分泌的生長因子調控,可對唾液腺分泌細胞、間質細胞以及生醫材料間互動關係有了基礎的瞭解。然而利用組織工程重建唾液線組織的功能是一個重要且相當複雜的研究方向,期待藉由了解體外培養唾液腺細胞的生長歷程與離體細胞培養環境的調控,可以取得更有利於植入細胞的培養天期與條件,對於日後發展唾液腺組織工程運用在臨床病人身上有所裨益。

Salivary gland is an exocrine gland that is responsible for saliva production. The secretion of saliva contains digestive enzymes, growth factors, and antimicrobial agents. This function is crucial in the processes of digestion, lubrication, and protection in the body. Therefore, salivary gland hypofunction can result serious negative effects on the patients quality of life. Radiation therapy (RT) for head and neck cancer, and autoimmune diseases (such as Sjogren’s syndrome) can cause unavoidable coirradiation of surrounding normal tissues such as the salivary glands. This effect results in irreversible damage of salivary glands hence to significantly reduces salivary output. Salivary gland hypofunction and xerostomia lead to hindering of speech (dysphonia), difficulty of swallowing (dysphagia), influences on nutrition (dysnutritia) and others. Currently, there is no treatment available to permanently treat dysfunctional salivary glands. Constructing artificial salivary glands with tissue engineering may be a viable curative procedure to treat patients suffering from dry mouth.
Tissue engineering applications in salivary glands require a significant amount of salivary gland cells and an understanding of gland cell-related coordination and function. Many experimental induce the increase of salivary gland stem/progenitor cells with duct ligation or fluorescence-activated cell sorting by antibodies. This research establishes a simple and highly reproducible protocol for isolation and characterization of stem/progenitor cells obtained from human salivary glands. The percentage of CD49f and CD90 double-positive cells was increased at 14 days after seeding, and then decreased at 28 days. The gene expression levels of ALDH1A1 and ALDH1A3 were also at the highest at 14 days after seeding. Cultured cells can successfully differentiate into adipocytes and osteocytes. E-cadherin expression in cultured cells increased with time while vimentin expression gradually decreased to a very low level after prolonged culture, inferring a MET during the repopulation process of cell culture. Our study confirmed the existence of progenitor cells in cultured adult human parotid glands. This research was also established a simple culture method to obtain sufficient progenitor cells for further tissue engineering studies.
However, maintaining the expression levels of amylase in culturing salivary gland epithelial cells is important.Salivary gland cells in vivo are surrounded by a complex stromal environment, in which fibroblasts are the main cell type in proximity to the gland cells. An appropriate number of fibroblasts in contact with the parotid gland acinar cells (PGACs) is necessary to promote PGAC function. Fibroblast-secreted bFGF may play a paracrine signaling role in the regulation of α-amylase expression in PGACs. Interestingly, the effect of fibroblast conditioned medium from PVDF on the α-amylase expression of PGACs was obviously enhanced. By growth factor protein array assay, higher NT-4 expression was observed in PVDF-derived fibroblast conditioned medium. Fibroblasts might be reprogrammed into neural-like cells after cultured on appropriate biomaterials.
In these studies, the interaction between PGACs, fibroblasts, and biomaterials was investigated. This could be treated patients with xerostomia and applying directly by re-implantation of autologous salivary gland tissue engineering. The re-implantation treatment can be a major contribution to their quality of life.


Contents i
摘要 v
Abstract vii
List of Abbreviations 1
Background 3
Anatomy and function of the salivary glands 3
The effect and treatment of xerostomia 5
Tissue engineering of salivary gland 6
Chapter I: A simple method to obtain multipotent progenitor cells from the adult human parotid gland 8
Introduction 8
Materials and Methods 10
Results 14
Discussion 30
Chapter II: Effects of fibroblasts on the function of acinar cells from the same human parotid gland 34
Introduction 34
Materials and Methods 35
Results 39
Discussion 55
Chapter III: Effects of biomaterial-derived fibroblast conditioned medium on the α-amylase expression of parotid gland acinar cells 59
Introduction 59
Materials and Methods 62
Results 67
Discussion 83
Summary 87
Perspective 88
References 89

[1] Mandel ID. The role of saliva in maintaining oral homeostasis. J Am Dent Assoc 1989;119:298-304.
[2] Miletich I. Introduction to salivary glands: structure, function and embryonic development. Frontiers of oral biology 2010;14:1-20.
[3] Knox SM, et al. Parasympathetic stimulation improves epithelial organ regeneration. Nature communications 2013;4:1494.
[4] Sreebny LM, Valdini A. Xerostomia. A neglected symptom. Archives of internal medicine 1987;147:1333-7.
[5] Aframian DJ, Palmon A. Current status of the development of an artificial salivary gland. Tissue engineering Part B, Reviews 2008;14:187-98.
[6] Mathew RJ, Weinman M, Claghorn JL. Xerostomia and sialorrhea in depression. The American journal of psychiatry 1979;136:1476-7.
[7] Fox PC. Acquired salivary dysfunction. Drugs and radiation. Annals of the New York Academy of Sciences 1998;842:132-7.
[8] Vokes EE, Weichselbaum RR, Lippman SM, Hong WK. Head and neck cancer. The New England journal of medicine 1993;328:184-94.
[9] Nagler RM, Baum BJ. Prophylactic treatment reduces the severity of xerostomia following radiation therapy for oral cavity cancer. Archives of otolaryngology--head & neck surgery 2003;129:247-50.
[10] Tanaka Isomura E, Yoshitomi K, Hamaguchi M, Yamamoto YE, Kogo M. Transplantation of vascularized submandibular gland in dogs. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons 2006;64:1561-5.
[11] Isomura ET, Yoshitomi K, Hamaguchi M, Kogo M. Saliva secretion stimulated by grafted nerve in submandibular gland allograft in dogs. Transplantation 2007;83:759-63.
[12] Delporte C, et al. Increased fluid secretion after adenoviral-mediated transfer of the aquaporin-1 cDNA to irradiated rat salivary glands. Proceedings of the National Academy of Sciences of the United States of America 1997;94:3268-73.
[13] Samuni Y, Baum BJ. Gene delivery in salivary glands: from the bench to the clinic. Biochimica et biophysica acta 2011;1812:1515-21.
[14] Hamlar DD, et al. Determination of the efficacy of topical oral pilocarpine for postirradiation xerostomia in patients with head and neck carcinoma. The Laryngoscope 1996;106:972-6.
[15] Burford-Mason AP, Dardick I, MacKay A. Collagen gel cultures of normal salivary gland: conditions for continued proliferation and maintenance of major cell phenotypes in vitro. The Laryngoscope 1994;104:335-40.
[16] Chopra DP, Xuehu IC. Secretion of alpha-amylase in human parotid-gland epithelial-cell culture. J Cell Physiol 1993;155:223-33.
[17] Joraku A, Sullivan CA, Yoo J, Atala A. In-vitro reconstitution of three-dimensional human salivary gland tissue structures. Differentiation; research in biological diversity 2007;75:318-24.
[18] Joraku A, Sullivan CA, Yoo JJ, Atala A. Tissue engineering of functional salivary gland tissue. The Laryngoscope 2005;115:244-8.
[19] Sato A, et al. Isolation, tissue localization, and cellular characterization of progenitors derived from adult human salivary glands. Cloning and stem cells 2007;9:191-205.
[20] Tran SD, et al. Primary culture of polarized human salivary epithelial cells for use in developing an artificial salivary gland. Tissue engineering 2005;11:172-81.
[21] Griffith LG, Naughton G. Tissue engineering--current challenges and expanding opportunities. Science 2002;295:1009-14.
[22] Lin CY, et al. Cell therapy for salivary gland regeneration. Journal of dental research 2011;90:341-6.
[23] Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920-6.
[24] Aframian DJ, Tran SD, Cukierman E, Yamada KM, Baum BJ. Absence of tight junction formation in an allogeneic graft cell line used for developing an engineered artificial salivary gland. Tissue engineering 2002;8:871-8.
[25] Pringle S, Van Os R, Coppes RP. Concise Review: Adult Salivary Gland Stem Cells and a Potential Therapy for Xerostomia. Stem Cells 2013;31:613-9.
[26] Jeong J, et al. Human salivary gland stem cells ameliorate hyposalivation of radiation-damaged rat salivary glands. Experimental & molecular medicine 2013;45:e58.
[27] Chan YH, et al. Formation of post-confluence structure in human parotid gland acinar cells on PLGA through regulation of E-cadherin. Biomaterials 2012;33:464-72.
[28] Okumura K, et al. Salivary gland progenitor cells induced by duct ligation differentiate into hepatic and pancreatic lineages. Hepatology 2003;38:104-13.
[29] Hisatomi Y, et al. Flow cytometric isolation of endodermal progenitors from mouse salivary gland differentiate into hepatic and pancreatic lineages. Hepatology 2004;39:667-75.
[30] Kishi T, Takao T, Fujita K, Taniguchi H. Clonal proliferation of multipotent stem/progenitor cells in the neonatal and adult salivary glands. Biochem Bioph Res Co 2006;340:544-52.
[31] Matsumoto S, et al. Isolation of tissue progenitor cells from duct-ligated salivary glands of swine. Cloning and stem cells 2007;9:176-90.
[32] Neumann Y, David R, Stiubea-Cohen R, Orbach Y, Aframian DJ, Palmon A. Long-Term Cryopreservation Model of Rat Salivary Gland Stem Cells for Future Therapy in Irradiated Head and Neck Cancer Patients. Tissue Eng Part C-Me 2012;18:710-8.
[33] Rotter N, et al. Isolation and characterization of adult stem cells from human salivary glands. Stem Cells Dev 2008;17:509-18.
[34] Schwarz S, Rotter N. Human salivary gland stem cells: isolation, propagation, and characterization. Methods Mol Biol 2012;879:403-42.
[35] Man YG, Ball WD, Marchetti L, Hand AR. Contributions of intercalated duct cells to the normal parenchyma of submandibular glands of adult rats. The Anatomical record 2001;263:202-14.
[36] Burford-Mason AP, Cummins MM, Brown DH, MacKay AJ, Dardick I. Immunohistochemical analysis of the proliferative capacity of duct and acinar cells during ligation-induced atrophy and subsequent regeneration of rat parotid gland. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology 1993;22:440-6.
[37] Chan YH, Huang TW, Young TH, Lou PJ. Selective culture of different types of human parotid gland cells. Head & neck 2011;33:407-14.
[38] Baer PC, Bereiter-Hahn J. Epithelial Cells in Culture: Injured or Differentiated Cells ? Cell biology international 2012.
[39] Bonventre JV. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. Journal of the American Society of Nephrology : JASN 2003;14 Suppl 1:S55-61.
[40] Chan YH, Huang TW, Young TH, Lou PJ. Human salivary gland acinar cells spontaneously form three-dimensional structures and change the protein expression patterns. J Cell Physiol 2011;226:3076-85.
[41] Nanba D, Nakanishi Y, Hieda Y. Changes in adhesive properties of epithelial cells during early morphogenesis of the mammary gland. Development, growth & differentiation 2001;43:535-44.
[42] Lim J, Thiery JP. Epithelial-mesenchymal transitions: insights from development. Development 2012;139:3471-86.
[43] Denny PC, Ball WD, Redman RS. Salivary glands: a paradigm for diversity of gland development. Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists 1997;8:51-75.
[44] Zou Z, et al. More insight into mesenchymal stem cells and their effects inside the body. Expert opinion on biological therapy 2010;10:215-30.
[45] Ishikawa Y, Ishida H. Aquaporin water channel in salivary glands. Japanese journal of pharmacology 2000;83:95-101.
[46] Bouwens L, Lu WG, De Krijger R. Proliferation and differentiation in the human fetal endocrine pancreas. Diabetologia 1997;40:398-404.
[47] Palmon A, David R, Neumann Y, Stiubea-Cohen R, Krief G, Aframian DJ. High-efficiency immunomagnetic isolation of solid tissue-originated integrin-expressing adult stem cells. Methods 2012;56:305-9.
[48] David R, Shai E, Aframian DJ, Palmon A. Isolation and cultivation of integrin alpha(6)beta(1)-expressing salivary gland graft cells: a model for use with an artificial salivary gland. Tissue engineering Part A 2008;14:331-7.
[49] Armstrong L, et al. Phenotypic characterization of murine primitive hematopoietic progenitor cells isolated on basis of aldehyde dehydrogenase activity. Stem Cells 2004;22:1142-51.
[50] Corti S, et al. Identification of a primitive brain-derived neural stem cell population based on aldehyde dehydrogenase activity. Stem Cells 2006;24:975-85.
[51] Jean E, et al. Aldehyde dehydrogenase activity promotes survival of human muscle precursor cells. Journal of cellular and molecular medicine 2011;15:119-33.
[52] Zhou P, Hohm S, Olusanya Y, Hess DA, Nolta J. Human progenitor cells with high aldehyde dehydrogenase activity efficiently engraft into damaged liver in a novel model. Hepatology 2009;49:1992-2000.
[53] Estes BT, Wu AW, Storms RW, Guilak F. Extended passaging, but not aldehyde dehydrogenase activity, increases the chondrogenic potential of human adipose-derived adult stem cells. J Cell Physiol 2006;209:987-95.
[54] Ginestier C, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell stem cell 2007;1:555-67.
[55] Adams A, Warner K, Nor JE. Salivary gland cancer stem cells. Oral oncology 2013;49:845-53.
[56] Ma I, Allan AL. The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem cell reviews 2011;7:292-306.
[57] Kastan MB, Schlaffer E, Russo JE, Colvin OM, Civin CI, Hilton J. Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood 1990;75:1947-50.
[58] Jiang F, et al. Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Molecular cancer research : MCR 2009;7:330-8.
[59] Banh A, et al. A novel aldehyde dehydrogenase-3 activator leads to adult salivary stem cell enrichment in vivo. Clinical cancer research : an official journal of the American Association for Cancer Research 2011;17:7265-72.
[60] Maria OM, Tran SD. Human mesenchymal stem cells cultured with salivary gland biopsies adopt an epithelial phenotype. Stem Cells Dev 2011;20:959-67.
[61] Miki Y, Ono K, Hata S, Suzuki T, Kumamoto H, Sasano H. The advantages of co-culture over mono cell culture in simulating in vivo environment. The Journal of steroid biochemistry and molecular biology 2012;131:68-75.
[62] Harimoto M, et al. Novel approach for achieving double-layered cell sheets co-culture: overlaying endothelial cell sheets onto monolayer hepatocytes utilizing temperature-responsive culture dishes. Journal of biomedical materials research 2002;62:464-70.
[63] Bhandari RN, et al. Liver tissue engineering: a role for co-culture systems in modifying hepatocyte function and viability. Tissue engineering 2001;7:345-57.
[64] Reichmann E, Ball R, Groner B, Friis RR. New mammary epithelial and fibroblastic cell clones in coculture form structures competent to differentiate functionally. The Journal of cell biology 1989;108:1127-38.
[65] Mujaj S, Manton K, Upton Z, Richards S. Serum-free primary human fibroblast and keratinocyte coculture. Tissue engineering Part A 2010;16:1407-20.
[66] Bucheler M, Wirz C, Schutz A, Bootz F. Tissue engineering of human salivary gland organoids. Acta Oto-Laryngol 2002;122:541-5.
[67] Wong T, McGrath JA, Navsaria H. The role of fibroblasts in tissue engineering and regeneration. The British journal of dermatology 2007;156:1149-55.
[68] Philip D, Chen SS, Fitzgerald W, Orenstein J, Margolis L, Kleinman HK. Complex extracellular matrices promote tissue-specific stem cell differentiation. Stem Cells 2005;23:288-96.
[69] Zheng C, Hoffman MP, McMillan T, Kleinman HK, O''Connell BC. Growth factor regulation of the amylase promoter in a differentiating salivary acinar cell line. J Cell Physiol 1998;177:628-35.
[70] Hori Y, Inoue S, Hirano Y, Tabata Y. Effect of culture substrates and fibroblast growth factor addition on the proliferation and differentiation of rat bone marrow stromal cells. Tissue engineering 2004;10:995-1005.
[71] Zahir N, Weaver VM. Death in the third dimension: apoptosis regulation and tissue architecture. Current opinion in genetics & development 2004;14:71-80.
[72] Vissink A, Jansma J, Spijkervet FK, Burlage FR, Coppes RP. Oral sequelae of head and neck radiotherapy. Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists 2003;14:199-212.
[73] Chou YS, Lin YC, Young TH, Lou PJ. Effects of fibroblasts on the function of acinar cells from the same human parotid gland. Head & neck 2014.
[74] Montesano R, Schaller G, Orci L. Induction of epithelial tubular morphogenesis in vitro by fibroblast-derived soluble factors. Cell 1991;66:697-711.
[75] Xu C, et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nature biotechnology 2001;19:971-4.
[76] Mohr JC, de Pablo JJ, Palecek SP. 3-D microwell culture of human embryonic stem cells. Biomaterials 2006;27:6032-42.
[77] Huang TW, Chan YH, Cheng PW, Young YH, Lou PJ, Young TH. Increased mucociliary differentiation of human respiratory epithelial cells on hyaluronan-derivative membranes. Acta biomaterialia 2010;6:1191-9.
[78] Chuang WY, Young TH, Yao CH, Chiu WY. Properties of the poly(vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro. Biomaterials 1999;20:1479-87.
[79] Chen YH, Chung YC, Wang IJ, Young TH. Control of cell attachment on pH-responsive chitosan surface by precise adjustment of medium pH. Biomaterials 2012;33:1336-42.
[80] Lou PJ, Chiu MY, Chou CC, Liao BW, Young TH. The effect of poly (ethylene-co-vinyl alcohol) on senescence-associated alterations of human dermal fibroblasts. Biomaterials 2010;31:1568-77.
[81] Yang TL, et al. Biomaterial mediated epithelial-mesenchymal interaction of salivary tissue under serum free condition. Biomaterials 2010;31:288-95.
[82] Wang TJ, Wang IJ, Chen YH, Lu JN, Young TH. Polyvinylidene fluoride for proliferation and preservation of bovine corneal endothelial cells by enhancing type IV collagen production and deposition. Journal of biomedical materials research Part A 2012;100:252-60.
[83] O''Brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 2000;267:5421-6.
[84] Beltzer EK, Fortunato CK, Guaderrama MM, Peckins MK, Garramone BM, Granger DA. Salivary flow and alpha-amylase: collection technique, duration, and oral fluid type. Physiology & behavior 2010;101:289-96.
[85] Chang HY, et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America 2002;99:12877-82.
[86] Chen MH, Hsu YH, Lin CP, Chen YJ, Young TH. Interactions of acinar cells on biomaterials with various surface properties. Journal of biomedical materials research Part A 2005;74:254-62.
[87] Miyamoto S, et al. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. The Journal of cell biology 1995;131:791-805.
[88] Chen X, et al. Integrin-linked kinase induces both senescence-associated alterations and extracellular fibronectin assembly in aging cardiac fibroblasts. The journals of gerontology Series A, Biological sciences and medical sciences 2006;61:1232-45.
[89] Lewin GR, Barde YA. Physiology of the neurotrophins. Annual review of neuroscience 1996;19:289-317.
[90] Mathison R, Davison JS, Befus AD. Neuroendocrine regulation of inflammation and tissue repair by submandibular gland factors. Immunology today 1994;15:527-32.
[91] De Vicente JC, Garcia-Suarez O, Esteban I, Santamaria J, Vega JA. Immunohistochemical localization of neurotrophins and neurotrophin receptors in human and mouse salivary glands. Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft 1998;180:157-63.
[92] Su GN, et al. Direct conversion of fibroblasts into neural progenitor-like cells by forced growth into 3D spheres on low attachment surfaces. Biomaterials 2013;34:5897-906.
[93] Kishaba Y, Matsubara D, Niki T. Heterogeneous expression of nestin in myofibroblasts of various human tissues. Pathology international 2010;60:378-85.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top