跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/28 08:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝家豪
研究生(外文):Chia-Hao Hsieh
論文名稱:前路頸椎減壓融合手術:探討植入節活動程度對於術後鄰近節之生物力學影響
論文名稱(外文):Anterior Cervical Decompression and Fusion: Influence of the Instrumented Segment’s Mobility on Adjacent Segmental Biomechanics
指導教授:王兆麟
指導教授(外文):Jaw-Lin Wang
口試委員:賴達明簡温原鄭智修
口試委員(外文):Dar-Ming LaiAndy ChienChih-Hsiu Cheng
口試日期:2015-06-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:36
中文關鍵詞:頸椎神經脊髓病變體外屍骨實驗手術節活動度生物力學
外文關鍵詞:Cervical Spondylotic Myelopathyin-vitro studyinstrumentationrange of motionbiomechanics
相關次數:
  • 被引用被引用:1
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究目的:
  了解經前路頸椎減壓融合手術後,頸椎在總活動度以及植入節拘束程度不同下其生物力學表現。
背景介紹:
  前路頸椎減壓融合手術為目前臨床上治療頸椎神經脊髓病變之方法。研究報告指出,此手術方式能有效舒緩病患症狀且具有良好的手術成效,但近幾年追蹤報告發現,術後可能產生鄰近節椎間盤提早退化情形,因此近年來術後鄰近節病變為脊椎研究領域討論的重點之一。
  目前學者推估手術節術後融合現象是加速鄰近節退化疾病發生的主因,因融合造成鄰近節活動度代償作用,活動度代償作用將造成椎間盤內壓力升高或應力上升,而導致鄰近節疾病發生。由文獻發現,病人植入節術後融合程度有高低差異。學界對於此差異是否會造成鄰近節術後生物力學變化並沒有統一的結論,因此本實驗將設計一實驗以觀察鄰近節在不同植入節融合程度下,以及不同總活動度時,其生物力學變化。
材料與方法:
  本實驗控制變因有二,第一為頸椎總活動度,第二為植入節拘束程度;觀察參數包含活動度貢獻百分比、中性區、椎間孔面積、椎間盤高度以及旋轉中心。實驗試樣為6副豬頸椎(C2-C7),以C4-C5椎節做為植入節。
  頸椎總活動度分為三組,分別是標準組、低活動組與高活動組,標準組之活動度為46度,低活動組活動度為35度,高活動組活動度為42度,角度皆參考文獻報告之病人頸椎術前與術後總活動角度。
  植入節以自製椎籠與固定器進行手術模擬,拘束程度分為兩組,低拘束組為控制植入節之活動度貢獻百分比為15%,高拘束組則控制在5%。
  參數量測方式:活動度貢獻百分比與旋轉中心皆利用運動軌跡進行分析;中性區由負載-位移曲線圖進行判斷;椎間盤高度與椎間孔面積皆使用X-ray影像量測。所有參數之統計部分採用配對樣本檢定(pair-t test),p值小於0.05視為有統計顯著。
結果:
  手術模擬後各組之植入節活動度貢獻百分比相比標準組皆顯著下降,鄰近節之活動度貢獻百分比在手術模擬後相比標準組顯著上升。低活動組時,高拘束組之中性區明顯低於低拘束組之中性區。各組別之植入節椎間盤高度於手術模擬後相比於標準組皆顯著上升,鄰近節椎間盤高度在高拘束之高活動組時有顯著變化,其中以前彎時前側高度下降,及後仰時後側高度下降最為顯著。在植入節為高拘束且頸椎為高活動度時,植入節之椎間孔面積相比標準組顯著下降。植入節之旋轉中心則在椎籠置入後,相比於鄰近節旋轉中心有前移趨勢。
結論:
  代償現象於手術模擬後各組皆發生。中性區在低活動組時顯示拘束效果佳將使椎體更穩定。椎間盤高度在高拘束組及高活動組時,容易造成鄰近節變化,且本研究顯示多發生於上鄰近節。椎間孔面積因植入物位置,導致植入節椎間孔面積於手術模擬後顯著下降。旋轉中心雖無統計差異,但由趨勢可發現植入節之旋轉中心會隨著植入物位置而改變。因此以臨床意義而言,拘束效果佳使頸椎更穩定,但代償現象更容易發生;鄰近節椎間盤高度會隨著病人活動度變大而造成顯著影響;植入物位置易造成椎間孔面積變化與旋轉中心偏移。


Objective:
To investigate the influence of the cervical total range of motion and instrumented segment’s mobility for cervical spine after simulated Anterior Cervical Decompression and Fusion (ACDF) surgery.

Introduction:
The ACDF surgery is a commonly employed surgical technique to treat Cervical Spondylotic Myelopathy (CSM). Despite the reported high clinical success rates of ACDF, an increased incidence of adjacent segment disease (ASD) post ACDF surgery has raised significant concerns in the literature.
Instrumentation fusion after ACDF was regarded as the main reason to accelerate ASD, range of motion compensation will occur in adjacent segment after instrumentation fusion, so the increasing range of motion will couple with intradiscal pressure and stress increase, and leads to ASD. However, instrumentation fusion effectiveness after ACDF is quite different in patients, whether fusion effectiveness after surgery affect cervical column or adjacent segment is not clearly understood. Therefore, this study aims to understand the difference in fusion effectiveness and its subsequent biomechanical influence on the instrumented and adjacent segments. Statistically, paired t-test was used to determine the difference between groups.

Material and method:
Cervical total range of motion and instrumented segment’s mobility are the two controlled factors in present study. Range of motion (ROM), neutral zone (NZ), disc height (DH), foramen area (FA) and center of rotation (COR) were included as the dependent parameters. This in-vitro study was constructed from 6 porcine cervical (C2-C7). The C4-C5 is designed as the instrumented-level.
Cervical total ROM included three groups, standard group (46⁰), low-ROM group (35⁰) and high-ROM group (42⁰), all groups were based on previous in-vivo flexion-extension data. In order to simulate ACDF, lab-design cage and lateral-constraint plates were used to control the mobility of instrumented level. Instrumented segment’s mobility included two groups, one is low-constraint (ROM contribution as 15%) and another is high-constraint (ROM contribution as 5%)
For the measurements of parameters, radiographs of the cervical spine were obtained before and after ACDF-simulation. Range of motion and center of rotation calculated from motion trajectory, disc height and foramen were obtained from radiographs, with the neutral zone calculated from the load-displacement curve.

Result:
Range of motion contribution to instrumented-level significantly decreased and adjacent-levels significantly increased after ACDF-simulation. Neutral zone was different between high-constraint and low-constraint scenarios with 0.5N-m disturbance. Under same constraint, disc height significantly increased in instrumented-level while adjacent-level decreased in anterior and increased in posterior during flexion. Furthermore, for the same range of motion, disc height of adjacent-level decreased in high-constraint group. Foramen area decreased in instrumented-level when instrumented-level was highly-constrained in high-ROM group. After lab-design cage was implanted, the center of rotation in the instrumented-level tended to move anteriorly in comparison with that in adjacent-level.

Conclusion:
Range of motion compensation was confirmed in every group after ACDF-simulation, 0.5N-m neutral zone demonstrated higher mobility of the cervical spine in high-constraint group. With disc heights of adjacent-levels affected by instrumented-level in higher range of motion or high-constrained scenarios, upper level changed more readily in this study. For clinical application, high-constrain of the cervical spine will improve cervical stability but often coupled with range of motion compensation as well as adjacent disc height.


目次
第一章 緒論 1
1.1 脊椎基本架構 1
1.2 頸椎神經脊髓病變與治療方式 3
1.2.1 頸椎神經脊髓病變(Cervical Spondylotic Myelopathy, CSM) 3
1.2.2 手術治療 4
1.2.3 前路頸椎減壓融合手術(ACDF)術後併發症 4
1.3 量測參數 5
1.3.1 活動度(Range of Motion) 5
1.3.2 中性區(Neutral Zone) 6
1.3.3 椎間盤高度(Disc Height) 7
1.3.4 椎間孔面積(Foramen Area) 7
1.3.5 旋轉中心(Center of Rotation) 7
1.4 實驗動機與目的 8
第二章 材料與方法 8
2.1 試樣處理 8
2.2 實驗設備 9
2.2.1 混合式測試機台 9
2.2.2 醫用電動圓磨鑽 10
2.2.3 移動式X-ray攝影機 11
2.2.4 手術用器具 11
2.3 前路頸椎融合減壓手術模擬 11
2.3.1 減壓模擬 11
2.3.2 融合模擬 12
2.4 實驗流程 12
2.5 參數量測 15
2.5.1 活動度貢獻百分比 15
2.5.2 中性區 16
2.5.3 椎間盤高度 16
2.5.4 椎間孔面積 16
2.5.5 旋轉中心 17
2.6 統計方法 17


第三章 結果 17
3.1 活動度貢獻百分比(ROM contribution) 17
3.2 中性區(Neutral Zone) 19
3.2.1 0Nm 19
3.2.2 0.5Nm 20
3.3 椎間盤高度(Disc Height) 21
3.4 椎間孔面積(Foramen Area) 24
3.5 旋轉中心(Center of Rotation) 25
第四章 討論 26
4.1 活動度貢獻百分比 26
4.2 中性區 27
4.3 椎間盤高度 27
4.4 椎間孔面積 29
4.5 旋轉中心 30
第五章 結論 31
5.1 結論 31
5.2 實驗限制與未來展望 31


參考文獻
1.Lantz, C. a et al. A reassessment of normal cervical range of motion. Spine (Phila. Pa. 1976). 28, 1249–1257 (2003).
2.Park, D.-H. et al. Effect of lower two-level anterior cervical fusion on the superior adjacent level. J. Neurosurg. Spine 7, 336–340 (2007).
3.Eck, J. C. et al. Biomechanical Study on the Effect of Cervical Spine Fusion on Adjacent-Level Intradiscal Pressure and Segemental Motion. Spine (Phila. Pa. 1976). 27, 2431–2434 (2002).
4.Wong, J. J., Côté, P., Quesnele, J. J., Stern, P. J. & Mior, S. a. The course and prognostic factors of symptomatic cervical disc herniation with radiculopathy: A systematic review of the literature. Spine J. 14, 1781–1789 (2014).
5.Gok, B. et al. Revision surgery for cervical spondylotic myelopathy: Surgical results and outcome. Neurosurgery 63, 292–298 (2008).
6.Landers, M. R. et al. Anterior cervical decompression and fusion on neck range of motion, pain, and function: A prospective analysis. Spine J. 13, 1650–1658 (2013).
7.Mummaneni, P. V et al. Cervical surgical techniques for the treatment of cervical spondylotic myelopathy. J. Neurosurg. Spine 11, 130–141 (2009).
8.Cunningham, M. R. a, Hershman, S. & Bendo, J. Systematic review of cohort studies comparing surgical treatments for cervical spondylotic myelopathy. Spine (Phila. Pa. 1976). 35, 537–543 (2010).
9.Kang, L., Lin, D., Ding, Z., Liang, B. & Lian, K. Artificial disk replacement combined with midlevel ACDF versus multilevel fusion for cervical disk disease involving 3 levels. Orthopedics 36, e88–94 (2013).
10.Hou, Y. et al. Cervical kinematics and radiological changes after Discover artificial disc replacement versus fusion. Spine J. 14, 867–77 (2014).
11.Chien, A. et al. Differential segmental motion contribution of single- and two-level anterior cervical discectomy and fusion. Eur. Spine J. (2015). doi:10.1007/s00586-015-3900-7
12.Gruss, P. & Tannenbaum, H. Stress exertion on adjacent segments after ventral cervical fusion. Arch. Orthop. Trauma Surg. 101, 283–286 (1983).
13.Hilibrand, A. S., Carlson, G. D., Palumbo, M. A., Jones, P. K. & Bohlman, H. H. Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis. J. Bone Jt. Surg. - Ser. A 81, 519–528 (1999).
14.Goffin, J. et al. Long-term follow-up after interbody fusion of the cervical spine. J. Spinal Disord. Tech. 17, 79–85 (2004).
15.Kim, S. W. et al. Comparison of radiographic changes after ACDF versus Bryan disc arthroplasty in single and bi-level cases. Eur. Spine J. 18, 218–31 (2009).
16.Virk, S. S., Niedermeier, S., Yu, E. & Khan, S. N. Adjacent Segment Disease. Orthopedics 37, 547–555 (2014).
17.Maldonado, C. V., Paz, R. D.-R. & Martin, C. B. Adjacent-level degeneration after cervical disc arthroplasty versus fusion. Eur. Spine J. 20 Suppl 3, 403–7 (2011).
18.McCormick, P. C. The adjacent segment. J. Neurosurg. Spine 6, 1–4; discussion 4 (2007).
19.Panjabi, M. M. Clinical spinal instability and low back pain. J. Electromyogr. Kinesiol. 13, 371–379 (2003).
20.JAMES J. YUE, JENS P. TIMM, M. M. P. & TORRE, A. J. J.-D. LA. Clinical application of the Panjabi neutral zone hypothesis: the Stabilimax NZ posterior lumbar dynamic stabilization system. Neurosurg Focus 22, 1–3 (2007).
21.Chen, T. Y., Crawford, N. R., Sonntag, V. K. & Dickman, C. a. Biomechanical effects of progressive anterior cervical decompression. Spine (Phila. Pa. 1976). 26, 6–13; discussion 14 (2001).
22.Grubb, M. R. et al. Biomechanical evaluation of anterior cervical spine stabilization. Spine (Phila. Pa. 1976). 23, 886–892 (1998).
23.Molina, C. et al. Comparative In Vitro Biomechanical Analysis of a Novel Posterior Cervical Fixation Technique Versus Conventional Posterior-based Constructs. J. Spinal Disord. Tech. 1 (2012). doi:10.1097/BSD.0b013e31824e1f86
24.Schmidt, R., Wilke, H. J., Claes, L., Puhl, W. & Richter, M. Effect of constrained posterior screw and rod systems for primary stability: Biomechanical in vitro comparison of various instrumentations in a single-level corpectomy model. Eur. Spine J. 14, 372–380 (2005).
25.Pitzen, T., Wilke, H. J., Caspar, W., Claes, L. & Steudel, W. I. Evaluation of a new monocortical screw for anterior cervical fusion and plating by a combined biomechanical and clinical study. Eur. Spine J. 8, 382–387 (1999).
26.Kwon, B., Kim, D. H., Marvin, A. & Jenis, L. G. Outcomes Following Anterior Cervical Discectomy and Fusion. J. Spinal Disord. Tech. 18, 304–308 (2005).
27.Ramazan KAHVECI, Bora GÜRER, Erdal Reşit YILMAZ, Habibullah DOLGUN, A. & Metin ŞANLI, Behzat Rüçhan ERGÜN, Z. Ş. Early Changes in The Operated and Adjacent Segments After Anterior Cervical Microdiscectomy and Interbody Fusion With Polyetheretherketone (PEEK) Cage Containing Synthetic Bone Particulate: A Prospective Study of 20 Cases. J. Neurol. Sci. 30, 629–639 (2013).
28.Park, D. K., Lin, E. L. & Phillips, F. M. Index and adjacent level kinematics after cervical disc replacement and anterior fusion: in vivo quantitative radiographic analysis. Spine (Phila. Pa. 1976). 36, 721–730 (2011).
29.Watanabe, S. et al. Three-dimensional kinematic analysis of the cervical spine after anterior cervical decompression and fusion at an adjacent level: A preliminary report. Eur. Spine J. 21, 946–955 (2012).
30.Seo, J.-Y. & Ha, K.-Y. Fate of Posterior Osteophytes in Fused Segments After Anterior Cervical Discectomy and Fusion. Spine (Phila. Pa. 1976). 37, 741–747 (2012).
31.Kelly, M. P., Mok, J. M., Frisch, R. F. & Tay, B. K. Adjacent segment motion after anterior cervical discectomy and fusion versus Prodisc-c cervical total disk arthroplasty: analysis from a randomized, controlled trial. Spine (Phila. Pa. 1976). 36, 1171–1179 (2011).
32.Li, Z. et al. Clinical and radiologic comparison of dynamic cervical implant arthroplasty versus anterior cervical discectomy and fusion for the treatment of cervical degenerative disc disease. J. Clin. Neurosci. 21, 942–948 (2014).
33.Yen-Kai Huang, J.-L. W. The Effect of Deep Muscle Force Change on the Cervical Stability after Laminoplasty - In Vitro Neck Model with Muscle Force Simulation.
34.Auerbach, J. D., Anakwenze, O. a, Milby, A. H., Lonner, B. S. & Balderston, R. a. Segmental contribution toward total cervical range of motion: a comparison of cervical disc arthroplasty and fusion. Spine (Phila. Pa. 1976). 36, E1593–9 (2011).
35.Panjabi, M. M. Centers and angles of rotation of body joints: a study of errors and optimization. J. Biomech. 12, 911–920 (1979).
36.Kunkel, M. E., Herkommer, A., Reinehr, M., Böckers, T. M. & Wilke, H. J. Morphometric analysis of the relationships between intervertebral disc and vertebral body heights: An anatomical and radiographic study of the human thoracic spine. J. Anat. 219, 375–387 (2011).
37.Van Mameren, H., Sanches, H., Beursgens, J. & Drukker, J. Cervical spine motion in the sagittal plane. II. Position of segmental averaged instantaneous centers of rotation--a cineradiographic study. Spine (Phila. Pa. 1976). 17, 467–474 (1992).
38.Anderst, W. J., Donaldson, W. F., Lee, J. Y. & Kang, J. D. Cervical Motion Segment Percent Contributions to Flexion-Extension During Continuous Functional Movement in Control Subjects and Arthrodesis Patients. Spine (Phila. Pa. 1976). 38, 533–539 (2013).
39.Cédric, B., Campana, S., Persohn, S., Perrin, G. & Skalli, W. Cervical disc prosthesis versus arthrodesis using one-level, hybrid and two-level constructs: An in vitro investigation. Eur. Spine J. 21, 432–442 (2012).
40.Finn, M. a., Brodke, D. S., Daubs, M., Patel, A. & Bachus, K. N. Local and global subaxial cervical spine biomechanics after single-level fusion or cervical arthroplasty. Eur. Spine J. 18, 1520–1527 (2009).
41.Andrew T. Healy, Swetha J. Sundar, R. J. C., Prasath Mageswaran, Edward C. Benzel, T. E. M. & Francis., and T. B. Zero-profile hybrid fusion construct versus 2-level plate fixation to treat adjacent-level disease in the cervical spine. J Neurosurg Spine 21, 753–760 (2014).
42.An in vivo analysis of the dimensional changes of the neuroforamen after anterior cervical diskectomy and fusion a radiologic investigation.pdf.
43.Liu, B. et al. Kinematic study of the relation between the instantaneous center of rotation and degenerative changes in the cervical intervertebral disc. Eur. Spine J. 2307–2313 (2014). doi:10.1007/s00586-014-3431-7
44.Crawford, N. R. et al. Biomechanics of a Fixed-Center of Rotation Cervical Intervertebral Disc Prosthesis. Int. J. Spine Surg. 6, 34–42 (2012).
45.Powell, J. W., Sasso, R. C., Metcalf, N. H., Anderson, P. a & Hipp, J. a. Quality of spinal motion with cervical disk arthroplasty: computer-aided radiographic analysis. J. Spinal Disord. Tech. 23, 89–95 (2010).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top