跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/05 19:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾宜倫
研究生(外文):I-Lun Chung
論文名稱:限制與非限制鬆弛度測試下正常踝關節之關節穩定度與距骨運動之量測與比較
論文名稱(外文):Comparisons of the Normal Ankle Laxity and Motion of the Talus during Constrained and Unconstrained Laxity Tests
指導教授:呂東武呂東武引用關係
指導教授(外文):Tung-Wu Lu
口試委員:林聰穎王廷明陳文斌
口試日期:2015-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:70
中文關鍵詞:踝關節機械手臂關節測試系統數位影像相關法前拉測試
外文關鍵詞:Ankle JointRobotic-based Joint Testing SystemDigital Image CorrelationAnterior Drawer Test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
踝關節傷害好發於各種運動。在眾多踝關節傷害中,踝關節扭傷占 75%,其中有 85% 的扭傷為內翻扭傷。若受傷後未妥善處理,73% 曾經扭傷的運動員有復發性踝關節扭傷,且當中 59% 的運動員有顯著殘疾與殘留症,造成踝關節不穩定,影響運動表現,因此針對踝關節穩定度的探討是個重要的議題。
本研究以踝關節做為研究對象,試著了解在受拉伸試驗下踝關節之穩定度與距骨運動情形。本次實驗結合了三維全域變形及應變量測系統、機械手臂關節測試系統以及影像處理,以獲得足夠的生物力學資訊。實驗會模擬臨床理學檢查進行踝關節的前拉試驗,過程中利用高畫素相機進行同步的動態拍攝;拉伸試驗後,更改控制方式,在拉伸試驗過程中對於前後向以外的自由度進行力量控制,重複上述實驗,以觀察不同控制方法對於關節穩定度與距骨運動造成的影響。最後利用數位影像相關法進行軟骨面的三維模型重建,接著與電腦斷層掃描出的骨頭模型進行對位可獲完整包含軟骨的骨頭模型,而在動態過程中脛骨端與距骨端軟骨中交錯的區域及代表軟骨受到壓縮變形,進而推算出其關節軟骨於動態過程中之變形分布。
研究結果發現,模擬臨床理學檢查的限制條件前拉測試中,軟骨受力面積較大、軟骨形變量較大,且距骨移動路徑較不規則,踝關節鬆弛度較不穩定,關節穩定較差;而對踝關節六個自由度進行力量與位移控制之前拉測試則較無上述問題。面對臨床上踝關節受傷患者,傳統的理學檢查可能會因為人為控制力量的不恰當造成踝關節二度傷害,且影響結果因子太多,使得臨床檢查結果不易判讀。

Ankle injuries occur in a variety of sports. Among the many ankle injuries, ankle sprain is accounted for 75%, including 85% of the sprain is inversion trauma. Not properly handled when after numerous ankle injuries, 73% of sprained athletes have recurrent ankle sprains, and 59% of athletes who suffered recurrent ankle sprains have significant residual symptoms and disability, resulting in ankle instability which further affect athletic performance. Therefore, explore for ankle stability is an important issue.
The main target of this study was to measure ankle stability and motion of talus under anterior drawer test in different conditions. This study combined the digital image correlation system (DIC), biomedical image process, and robotic-based joint testing system (RJTS). The experiments were conducted simulating clinical physical examination of anterior drawer test and using high-pixel synchronized cameras to capture talus motion during the process. Then altered the control method, conducted the anterior drawer test with position control in the anterior/posterior direction while force control in other five degree-of-freedoms. Three-dimensional articular surfaces were reconstructed using DIC system. These articular surfaces were matched with bone models reconstructed by CT scan to get complete bone models which contains cartilages and bones. During the anterior drawer test, the interlaced sections of cartilages of tibia and talus are considered the deformations of cartilage, and the distribution of deformation on the articular surfaces can be derived by proper calculation.
The results suggested that during simulated clinical physical examination of anterior drawer test compared to the force controlled anterior drawer test, the contact area of articular surfaces is larger, the cartilage deformation is more significant, the motion of talus is more unpredictable, the joint laxity is less stable, and the joint stability is poorer. This indicates that clinical treatments could be harmful if improper force is applied on injured ankle.

致 謝 I
摘 要 II
ABSTRACT III
目 錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
第一節 研究動機 1
第二節 踝關節之功能解剖構造 2
一、 骨骼系統 2
二、 韌帶系統 4
三、 肌肉組織 5
第三節 文獻回顧 7
一、 活體研究 7
二、 試體研究 8
三、 機械手臂關節測試系統 12
四、 數位影像相關法 13
第四節 研究目的 15
第二章 材料與方法 16
第一節 踝關節試體 16
第二節 硬體 17
一、 機械手臂系統 (RV20A, Mitsubishi Electric Corporation, Japan) 18
二、 六軸力規 (Model PY6-100, Bertec Corporation, USA) 19
三、 夾具設備 20
四、 三維全域變形及應變量測系統 (VIC3D, Correlation Solutions Inc., SC, US) 21
第三節 軟體 22
一、 Visual Basic 6.0 (Microsoft Corp., WA, USA) 22
二、 三維全域變形及應變量測系統 (VIC3D, Correlation Solutions Inc., SC, US) 23
三、 Geomagic Studio 12 (3D Systems, Inc., SC, USA) 24
四、 Amira 5.3 (Visualizaton Sciences, Group, an FEI Company, MA, USA) 25
五、 Scanalyze (Stanford Computer Graphics Laboratory, The Board of Trustees of The Leland Stanford Junior University) 26
第四節 控制理論與實驗流程 27
一、 座標系統定義 27
二、 機器人學理論應用:機械手臂控制 29
三、 實驗流程 30
第三章 研究結果 31
第一節 機械手臂力量控制 31
第二節 踝關節穩定度 37
第三節 踝關節軟骨重建 39
第四節 距骨運動情形 41
第五節 踝關節軟骨變形 48
第四章 討論 58
第一節 機械手臂力量控制 58
第二節 踝關節穩定度 59
第三節 踝關節軟骨重建 59
第四節 距骨移動情形 60
第五節 踝關節軟骨變形 63
第六節 誤差來源 64
第五章 總結 65
第一節 結論 65
第二節 未來展望 66
參考資料 67


1.Garrick, J.G. and R.K. Requa, Role of external support in the prevention of ankle sprains. Med Sci Sports, 1973. 5(3): p. 200-203.
2.Garrick, J.G., The frequency of injury, mechanism of injury, and epidemiology of ankle sprains. The American journal of sports medicine, 1977(5): p. 241-2.
3.Garrick, J. and R. Requa, The epidemiology of foot and ankle injuries in sports. Clinics in sports medicine, 1988. 7(1): p. 29-36.
4.Baumhauer, J.F., et al., A prospective study of ankle injury risk factors. The American journal of sports medicine, 1995. 23(5): p. 564-570.
5.Yeung, M., et al., An epidemiological survey on ankle sprain. British journal of sports medicine, 1994. 28(2): p. 112-116.
6.Cornwall, M.W. and T.G. McPoil, Reliability and validity of center-of-pressure quantification. Journal of the American podiatric medical association, 2003. 93(2): p. 142-149.
7.Your Foot as a Twisted Plate: Supination and Pronation. 2014 July 5; Available from: http://www.foundationpilates.com/foot-twisted-plate-supination-pronation/.
8.Riegger, C.L., Anatomy of the ankle and foot. Physical Therapy, 1988. 68(12): p. 1802-14.
9.Siegler, S., J. Chen, and C. Schneck, The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints—Part I: Kinematics. Journal of biomechanical engineering, 1988. 110(4): p. 364-373.
10.Holden, J.P., E.S. Grood, and J.F. Cummings, Factors affecting sensitivity of a transducer for measuring anterior cruciate ligament force. Journal of biomechanics, 1995. 28(1): p. 99-102.
11.Herzog, W., et al., Evaluation of the implantable force transducer for chronic tendon-force recordings. Journal of biomechanics, 1996. 29(1): p. 103-109.
12.Hall, G.W., et al., Rate-independent characteristics of an arthroscopically implantable force probe in the human achilles tendon. Journal of biomechanics, 1999. 32(2): p. 203-207.
13.Fleming, B.C., G.D. Peura, and B.D. Beynnon, Factors influencing the output of an implantable force transducer. Journal of biomechanics, 2000. 33(7): p. 889-893.
14.Ravary, B., et al., Strain and force transducers used in human and veterinary tendon and ligament biomechanical studies. Clinical biomechanics, 2004. 19(5): p. 433-447.
15.Siegler, S., et al., A six-degrees-of-freedom instrumented linkage for measuring the flexibility characteristics of the ankle joint complex. Journal of biomechanics, 1996. 29(7): p. 943-947.
16.Hollis, J.M., R.D. Blasier, and C.M. Flahiff, Simulated lateral ankle ligamentous injury change in ankle stability. The American journal of sports medicine, 1995. 23(6): p. 672-677.
17.Aydogan, U., R.R. Glisson, and J.A. Nunley, Extensor retinaculum augmentation reinforces anterior talofibular ligament repair. Clinical orthopaedics and related research, 2006. 442: p. 210-215.
18.Lewis, J., W. Lew, and J. Schmidt, A note on the application and evaluation of the buckle transducer for knee ligament force measurement. Journal of biomechanical engineering, 1982. 104(2): p. 125-128.
19.Bahr, R., et al., Mechanics of the anterior drawer and talar tilt tests: a cadaveric study of lateral ligament injuries of the ankle. Acta Orthopaedica, 1997. 68(5): p. 435-441.
20.Colville, M.R., et al., Strain measurement in lateral ankle ligaments. The American journal of sports medicine, 1990. 18(2): p. 196-200.
21.Ozeki, S., et al., Simultaneous strain measurement with determination of a zero strain reference for the medial and lateral ligaments of the ankle. Foot & ankle international, 2002. 23(9): p. 825-832.
22.Tohyama, H., et al., Biomechanical analysis of the ankle anterior drawer test for anterior talofibular ligament injuries. Journal of orthopaedic research, 1995. 13(4): p. 609-614.
23.Fujie, H., et al., The use of robotics technology to study human joint kinematics: a new methodology. Journal of biomechanical engineering, 1993. 115(3): p. 211-217.
24.Rudy, T., et al., A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. Journal of biomechanics, 1996. 29(10): p. 1357-1360.
25.Prisk, V.R., et al., Lateral ligament repair and reconstruction restore neither contact mechanics of the ankle joint nor motion patterns of the hindfoot. The Journal of Bone & Joint Surgery, 2010. 92(14): p. 2375-2386.
26.Fujie, H., et al., Forces and moments in six-DOF at the human knee joint: mathematical description for control. Journal of biomechanics, 1996. 29(12): p. 1577-1585.
27.Peters, W. and W. Ranson, Digital imaging techniques in experimental stress analysis. Optical Engineering, 1982. 21(3): p. 213427-213427-.
28.Peters, W., et al., Application of digital correlation methods to rigid body mechanics. Optical Engineering, 1983. 22(6): p. 226738-226738-.
29.Chu, T., W. Ranson, and M. Sutton, Applications of digital-image-correlation techniques to experimental mechanics. Experimental mechanics, 1985. 25(3): p. 232-244.
30.Sutton, M., et al., Application of an optimized digital correlation method to planar deformation analysis. Image and Vision Computing, 1986. 4(3): p. 143-150.
31.Hagara, M., R. Huňady, and P. Lengvarský, A Determination of the Kinematic Quantities of a Rotating Object by Digital Image Correlation Method. American Journal of Mechanical Engineering, 2013. 1(7): p. 289-292.
32.Pan, B., et al., Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Measurement science and technology, 2009. 20(6): p. 062001.
33.Boyce, B.L., et al., Full-field deformation of bovine cornea under constrained inflation conditions. Biomaterials, 2008. 29(28): p. 3896-3904.
34.Gao, Z. and J.P. Desai, Estimating zero-strain states of very soft tissue under gravity loading using digital image correlation. Medical image analysis, 2010. 14(2): p. 126-137.
35.Sztefek, P., et al., Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia. Journal of biomechanics, 2010. 43(4): p. 599-605.
36.張立德, 利用機械手臂關節測試系統研究距下關節骨融合術對踝關節穩定度與外側韌帶之影響. 國立臺灣大學醫學工程學研究所, 2013.
37.Corporation, M.T. 六軸力規(應變式-PY6). Available from: http://www.memstec.com.tw/product.php?pid=210.
38.Incorporation, P.G. GRASSHOPPER 5.0 MP MONO FIREWIRE 1394B. Available from: http://www.ptgrey.com/grasshopper-5-0-mp-mono-firewire-1394b-sony-icx625-camera.
39.Correlated Solutions, I. The VIC-3D™ System. 2013; Available from: http://www.correlatedsolutions.com/vic-3d/.
40.Rusinkiewicz, S. and M. Levoy. Efficient variants of the ICP algorithm. in 3-D Digital Imaging and Modeling, 2001. Proceedings. Third International Conference on. 2001. IEEE.
41.徐徹菖, 利用工業機械手臂發展關節生物力學測試系統之研究. 國立臺灣大學醫學工程學研究所, 2005.
42.陳淳皓, 以數位影像相關法與機械手臂系統研究距下關節固定術對踝關節面之生物力學影響. 國立臺灣大學醫學工程學研究所, 2013.
43.Wu, G., et al., ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. Journal of biomechanics, 2002. 35(4): p. 543-548.
44.Al‐Ali, D., et al., Quantitative cartilage imaging of the human hind foot: Precision and inter‐subject variability. Journal of orthopaedic research, 2002. 20(2): p. 249-256.
45.Keith L. Moore, A.F.D., A. M. R. Agur, Clinically Oriented Anatomy. 6th ed. Chapter 5, Lower Limb, Overview of lower limb. 2010. 521-2.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top